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ABSTRACT
Classifying trip modalities, i.e. driving, walking, etc., from GPS

trajectories is one of the fundamental tasks for urban mobility ana-

lytics. It can be used for efficient route planning, human activity

recognition, and public transportation design where understanding

the time and location of transitioning to different modalities may

provide additional insights. Informally, given a GPS trajectory con-

sisting of temporally ordered GPS locations, trip modality/activity

classification aims to assign trip modes to each GPS point. It is a

challenging task due to the associated noise with the GPS data, the

lack of knowledge about the underlying road network as well as

the driving traffic conditions which may affect the trip behavior

(e.g. driving slower than walking speed at rush hour traffic). De-

spite its widespread applications, the existing methods are either

dependent on multi-sensor data (such as GPS, IMU, Camera, etc.) or

use heuristic-based filtering to classify modalities of the trajectory

datasets. Moreover, they consider limited number of transitions per

trip making them inadequate for more frequent activity changes.

In this paper, we propose a novel deep neural network architecture,

Frequent Activity Classification Network 𝐹𝐴𝐶𝑁𝑒𝑡 , leveraging a

bi-directional LSTM network and a custom Attention module to

infer modality of GPS points in a trajectory with frequent modality

changes. Our supervised learning approach depends only on the

GPS trace without any additional inputs, making it applicable to

a wide variety of modality related problems. Experiments confirm

the superiority of our method compared to the related work as

well as heuristic approaches. Finally, we provide access to a set of

anonymized GPS trajectories that is made available to the broader

research community to provide opportunities to further improve

the existing research on the topic.
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1 INTRODUCTION
Given a GPS trajectory which consists of temporally ordered GPS

points, trip modality classification aims to assign trip modes at

the granularity of each GPS point. For the sake of simplicity, in

this paper, two major trip modes were considered: walking and

driving. Trip mode classification is important for applications such

as human activity recognition, public transportation design, as

well as efficient route planning [12]. Understanding these activities

per trip can lead to better planning for urban infrastructure, e.g.

planning parking locations, understanding real average speeds on

roads, etc. as well as better understanding of the underlying causes

of frequent modality changes, e.g. changing buses between stations,

etc. In last mile logistics, trip mode classification is important to

determine how much time is spent for driving related activities and

package delivery related activities, i.e. from parking location to the

customer’s doorstep. Since such examples involve more frequent

activity transitions, the detection of such cases become harder. Yet,

accurately classifying high frequency modality changes become

critical.

1.1 Challenges
Trip modality detection is a challenging task due to a variety of

reasons. First, GPS data often have a variety of quality issues. The

ubiquity of smartphones makes them a primary GPS data source.

Yet smartphone sensors are embedded System on Chip (SoC) de-

vices with limited signal reception, leading to accuracy degradation
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in urban canyons, and near or inside buildings. More accurate GPS

sensors are larger and consume more energy, making them unsuit-

able as smartphone sensors [13].

Second, GPS data is usually sampled at a low temporal resolution,

bringing an ambiguity. For example, if GPS points are sampled at 5s

intervals and the last known speed is 20 m/s, this may introduce a

100-meter radius blind-zone where the location of the driver is not

known. There is always an option to have more frequent sampling,

but higher sampling frequency causes increased storage and band-

width costs, reduced battery life and varying noise especially with

different brands/models of smartphones with different efficiency

and sensor quality.

Third, GPS points are usually inadequate to successfully under-

stand the human behavior when there is no additional data that

can be coupled with it. In our work, we assume that we lack any

additional sensor data, e.g. Inertial Measurement Unit (IMU). IMU

is very beneficial for trip modality detection [16]. In fact, smart

watches and fitness trackers use these sensors to determine walk-

ing activities often with high accuracy. However, these may bring

an additional data transfer and storage cost as well as additional

battery impact, which we try to avoid. It is worthwhile to note

that the proposed approach in this paper is flexible enough to be

extended for additional features that can be generated with IMU

sensor data which can further improve the performance.

Finally, simple rule based approaches [19] may not be adequate

since the traffic conditions vary by the underlying urbanization as

well as traffic rules. For example, in downtown areas, at rush hour,

the traffic often slows down enough for rule-based approaches to

mistakenly infer walking. Similarly, the signal attenuation inside

buildings often cause GPS points to bounce around, causing naïve

rule-based approaches to mistakenly infer driving due to high speed

calculated from between GPS points. Moreover, such rule based

approaches typically due not enforce physical knowledge, and may

lead to nonsensical output, such as driving for 1 second. Therefore,

spatial and temporal dependencies should be taken into account.

1.2 Related Work
Related work on activity classification from GPS trajectories are

usually focused on detecting bus/bicycle/walk types of activities

by not only using the GPS points, but also with the addition of

IMU sensor readings [6, 16]. Moreover, most existing work requires

high sampling rates for GPS points (usually 1 point per second -

pps) to be able to couple these with the IMU readings. More im-

portantly, the existing approaches have to deal with a very limited

number of transitions throughout the entire trajectory. For example,

a trajectory starts with a walk to the bus stop, then the trip mode

continues with bus mode, next walking and at the end of the day

the sequence repeat in reverse. In our work, we focus on high fre-

quency of transitions between different modalities. For example, in

the in last mile delivery, these transitions may be more than 20 per

hour. The comparison between these is shown in the Figure 1. Left

side of Figure 1 illustrates traditional activity classification where

the right side represents the high frequency activity classification

problem we are focused on. In summary, even minor misclassifi-

cations would become much more detrimental due to these high

frequency of transitions.

Figure 1: Illustration of frequent number of transitions for
an activity classification task. Left side represents traditional
work seen in the research community. Right side represent
the high frequency activity classification problem we focus
on. Increased number of transitions have negative impact on
the performance of all models.

Figure 2: Taxonomy of the related work

As shown in Figure 2, despite the differences in their objective,

there is a wide variety of research on activity classification from

GPS trajectories [17, 21]. The work in this area generates trip-

related features (e.g. speed, acceleration, etc) for each GPS point

and uses them in a machine learning model to predict the modal-

ities. Similarly, some work in this domain uses features that are

generated by a deep neural network architecture to avoid the use

of manually-chosen features [1, 2, 4]. Yet, these do not consider the

temporal dependencies between each GPS point causing the models

to have abrupt, i.e. physically impossible transitions (impossible

de/acceleration rates, etc.). Finally, there are approaches which use

LSTM framework to allow the model to learn the temporal depen-

dencies between individual GPS points [7]. The approaches in this

area provide state-of-the-art results for activity classification from

GPS traces.

Some representative work [5] in this area uses embeddings over

the point-based speed features. However, in [5], a simple addition of

embedding vectors is performed before forwarding them to LSTM

layer potentially limiting the performance of the model due to

bottleneck in information flow. In [2], the authors proposed a semi-

supervised method that use (de)convolutional auto-encoders to

improve the model performance. Although the results are promis-

ing, the approach is not directly comparable to ours, since the

proposed model focuses on detection of segments which are longer

than a pre-defined threshold (20 minutes), instead of individual

point-level classifications, which is the focus of our approach.

1.3 Contributions
Our contributions are twofold:

First, we propose a novel deep learning architecture, Frequently

Changing Activity Classification Network 𝐹𝐴𝐶𝑁𝑒𝑡 , to infer the

activity modalities from GPS trajectories. 𝐹𝐴𝐶𝑁𝑒𝑡 architecture is

inspired from the large body of Natural Language Processing (NLP)

research. When each GPS trajectory is considered as a paragraph

and each sub-trajectory sequence is considered as a sentence, and
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Figure 3: An example GPS trajectory that was used in tests
conducted for this paper. The entire trip is > 6 hours long
which is represented with 4213 GPS points. Example shown
in the figure is a subset with 2 hours of the trip with 1400
GPS points. A basemap is omitted for privacy.

each GPS point is considered a word, our problem becomes analo-

gous to a Part of Speech (PoS) tagging problem [11, 15]. Using this

idea, we developed an architecture that uses an encoder, a dual layer

bi-directional LSTM and a decoder module. We also developed an

attentionmodule that is convolved with the LSTM output to provide

better focus for the classifications temporally nearby. We gener-

ate features that represent the motion, the geometric shape, and

distances to incorporate all behavioral, road dependent and noise

related signals collected by the GPS data. These features are fed to

an encoder module to identify the intrinsic relationship between

each other.

Even though there are efforts in the mobility classification field

which use deep learning architectures and similar feature gener-

ation techniques, our proposed approach is unique in that (i) we

use an attention module to improve the model performance, (ii)

we blend different types of features, and (iii) we particularly focus

on the high frequency activity transitions. Our experiments show

that the proposed 𝐹𝐴𝐶𝑁𝑒𝑡 method, compared to an heuristic and

a deep learning based method, outperforms them substantially. In

addition, we propose two supplementary metrics (i.e. teleportation

distance, distance to vehicle line) that can be used to evaluate any

activity classification technique without labeled ground-truth data.

Second, as part of our commitment to the research in this topic,

we provide access to a sample of the GPS trajectory data that we

used in our experiments [3]. We believe that such data will open

new opportunities in the field of the GPS Activity Classification.

Researchers in academia will have access and be able to use it to

evaluate the performance of their existing research.

1.4 Scope and Outline
This paper proposes an activity classification model which classifies

individual GPS points in a trajectory. By framing the problem as a

Figure 4: An illustration of GPS trajectory, Segment, Activity
Timeline as well as teleportation gap (best in color).

point-classification problem, our framework both subdivides the full

trajectory into contiguous-activity sub-trajectories, called “activity

segments”, and assigns an activity label for each activity segment.

This distinguishes our framework from other methods that accept

sub-trajectories as input, which is a simpler problem.

The proposed approach currently considers two modalities, i.e.

driving and not-driving (e.g. walking). Other modalities are out

of the scope of this specific paper, although the architecture may

easily be extended for other modalities too.

Many additional inputs can improve the model, i.e. underlying

road network, IMU data, building outlines, vehicle OBD sensors, etc.

However, we assume that the availability of all these are limited.

Therefore, the goal is to achieve the maximum possible accuracy

by only using the GPS trajectory, which makes the model usable in

a wide variety of applications.

The rest of the paper is structured as follows: Section 2 intro-

duces the basic concepts followed by the formal problem definition.

Next, Section 3 explains the proposed approach, i.e. 𝐹𝐴𝐶𝑁𝑒𝑡 . The

evaluations are done in Section 4. Finally Section 5 concludes the

paper and provides an overview of our future directions.

2 BASIC CONCEPTS AND PROBLEM
STATEMENT

In this section, we will describe the basic concepts that the proposed

approach built on followed by the formal problem definition.

2.1 Basic Concepts
Definition 1. Trajectory: A trajectory T is a sequence of tempo-

rally ordered points 𝑝1,2,...,𝑚 , where each 𝑝𝑖 ∈ T represents a location
(longitude, latitude) on the surface of Earth and a recording timestamp
𝑡 . Since a trajectory has a temporal component, for each point 𝑝𝑖 , 𝑝𝑖+1,
𝑡𝑖+1 > 𝑡𝑖 where 𝑡 is the recording timestamp of the GPS point. The set
of all trajectories is denoted with T .

In this paper, we use GPS trajectories with points that are sam-

pled with 5 second intervals. However, feature generation can be

extended to use other sampling rates as well. An example GPS

trajectory is shown in Figure 3. The example is shown without a

basemap to eliminate any privacy concerns. In this example there

are 4213 GPS points with 5 second sampling rate corresponding to

6 hours of trip time and over 100 modality transitions.

Definition 2. Segment: An activity segment S ⊂ T is a sub-
trajectory where all GPS point share the same modality. We will use
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the terms segment and activity segments interchangeably. The three
ellipses in Figure 4 illustrate 3 segments that constitute the trajectory.

A GPS Trajectory T is a representation of a continuous phenom-

ena (e.g. a trip) with discrete representation of GPS points. Thus,

activity classification is the estimation of the underlying real world

activity transitions over the discrete time intervals of GPS points.

Due to this discrete sampling, the classifications also happen over

these GPS points instead of arbitrary times.

Definition 3. Transition Point: A transition point 𝑝𝑡 is the
first or last point of a segment. If 𝑝𝑡 is the first point of a segment
then 𝑝𝑡−1 and 𝑝𝑡 differ in modality. If 𝑝𝑡 is the last point of a segment
then 𝑝𝑡 and 𝑝𝑡+1 differ in modality.

2.2 Problem Statement
The Classification of Frequently-Changing Activities problem is

formally defined as follows:

Given:
(1) A set of GPS Trajectories T where each trajectory T ∈ T

is a representation of movement with discrete set of GPS

points 𝑝 ∈ T.
(2) A set of annotated timelines which correspond to each GPS

trajectory in the training data.

Classify:
Each GPS point in a GPS trajectory as "Driving" or "Walking".

Objective: Accurately classify each GPS point in each GPS trajec-

tory.

Constraints:
(1) Continuity of activity segments, i.e. not breaking them into

multiple partitions.

(2) Handling high frequency of modality changes.

(3) Creating a generic model with a possibility to handle addi-

tional inputs, i.e. more classes, additional sensor data, change

of sampling rates.

Example: Given the GPS trajectory in Figure 3, Figure 5 shows

a zoomed in area from the proposed model output. In this specific

example, all of the 26 walking segments were successfully detected.

The point-wise accuracy is 98%, meaning that 98% of GPS points

were classified correctly.

3 PROPOSED APPROACH
In this section, first, we will describe the features generated for each

GPS point for a GPS trajectory and describe how we prepare our

datasets for training and inference. Next, we will explain how the

groundtruth data collection was done. Finally, we will describe the

overall architecture of our proposed 𝐹𝐴𝐶𝑁𝑒𝑡 framework in detail.

3.1 Feature Generation
Despite their simple form of just longitude, latitude and timestamp,

GPS trajectories provide many rich features to identify the activity

characteristic.

Timelag: In our model, we add the timelag between GPS points

as a feature. The sampling rate does not provide much informa-

tion since we have constant sampling rate of 5 seconds. However,

our exploratory analysis showed that the mobile phone operating

system sometimes sends the same location repeatedly when the

(a) Groundtruth Activity Classes (b) Proposed Model Output

Figure 5: Given the input GPS trajectory in Figure 3, a zoomed
in subset of the prediction output. To make a visual compar-
ison, left side shows the hand annotated groundtruth and
right shows the predictions (best in color).

signal is lost or the battery is depleted. To eliminate the effect of

such cases, we drop the duplicate records, causing a varying time

lag between GPS points when that happens. Therefore, we use this

as an input feature to the model.

Motion Features: We derive all motion based features using

the distances between each consecutive GPS point. The Haversine

distance calculates the distance between two GPS points on a sphere

using the latitude and longitudes. We use Haversine distance as a

feature, which provides a simple yet scalable enough approximation

to the actual distances. The Haversine distance can be calculated

as follows:

𝑑𝑖𝑠𝑡𝑙𝑎𝑔 = 2𝑟𝑠𝑖𝑛−1
(√︂

𝑠𝑖𝑛2
(
Φ2−Φ1

2

)
+ 𝑐𝑜𝑠 (Φ1)𝑐𝑜𝑠 (Φ2)𝑠𝑖𝑛2

(
𝜆2−𝜆1

2

) )
where 𝑟 (Earth radius for a perfect sphere) is assumed to be 6371000

meters, Φ and 𝜆 are the radians of longitudes and latitudes respec-

tively.

Once these distances are generated, we use the 𝑡𝑖𝑚𝑒𝑙𝑎𝑔s to cal-

culate, pairwise speeds as 𝑠𝑝𝑒𝑒𝑑𝑖 = 𝑑𝑖𝑠𝑡𝑙𝑎𝑔𝑖/𝑡𝑖𝑚𝑒𝑙𝑎𝑔𝑖 , accelera-

tion/deceleration as 𝑎𝑐𝑐𝑖 = (𝑠𝑝𝑒𝑒𝑑𝑖 − 𝑠𝑝𝑒𝑒𝑑𝑖−1)/𝑡𝑖𝑚𝑒𝑙𝑎𝑔, jerk with

𝑗𝑒𝑟𝑘𝑖 = (𝑎𝑐𝑐𝑖 − 𝑎𝑐𝑐𝑖−1)/𝑡𝑖𝑚𝑒𝑙𝑎𝑔.

Bearing: Despite the common usage of bearing as-is in the re-

search community, but compass bearing is a cyclic value, i.e. 𝜃 =

359
◦
is close to 𝜃 = 1

◦
. Thus, instead of using compass bearings, we

represent the bearing with two features. The combination of these

two features provide a representation of similarity in directions.

The bearing related features can be calculated as follows:

𝑥 = 𝑠𝑖𝑛(𝜆2 − 𝜆1) × 𝑐𝑜𝑠 (Φ2)
𝑦 = 𝑐𝑜𝑠 (Φ1) × 𝑠𝑖𝑛(Φ2) − 𝑠𝑖𝑛(Φ1) × 𝑐𝑜𝑠 (Φ2) × 𝑐𝑜𝑠 (𝜆2 − 𝜆1))
𝜃 = (deg(𝑎𝑟𝑐𝑡𝑎𝑛(𝑦/𝑥)) + 360) mod 360

Hence, 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑐𝑜𝑠 = 𝑐𝑜𝑠 (𝜃 ), 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑠𝑖𝑛 = 𝑠𝑖𝑛(𝜃 ).
We also add an additional bearing related feature, namely bearing

change, which is in between 0 − 180 to indicate the turns. Finally,

we developed a 𝑡𝑢𝑟𝑛 (i.e. a quantized bearing) feature to indicate

left and right turns. This feature is generated to distinguish to help

the model learn from the waits for left turns from faster right turns

that doesn’t often require waiting.

39



IWCTS ’22, November 1, 2022, Seattle, WA, USA Eftelioglu, et al.

Geometric Features: Our third type of feature is geometry

related. Geometric indicators can help the model distinguish the

shape of the trajectory—driving correlates to straight lines while

walking correlates to a jittery pattern. We use straightness index

defined as cord distance between the first and last points divided

by the path distance. We also use Frèchet distance. These features

are generated for 𝑁 = 3 and 𝑁 = 5 points surrounding each GPS

point. Thus we generate 4 geometric features in total.

Overall, we generate 18 features and associate these with each

GPS point.

3.2 Ground-truth Data Annotations
We recruited a small group of volunteer delivery drivers that gave

us permission to film them during delivery using dashcams. The

SD cards were collected at the end of each day, uploaded, faces

were blurred, and the videos were sent for manual annotation. Two

annotators annotated each video at 0.5 FPS (one frame per two

seconds). When two annotators did not arrive at sufficiently similar

annotations, a third annotator would act as an arbiter. Our dataset

covers multiple drivers and multiple cities.

Even with such a rigorous process, there are still some faulty

annotations. We investigated the examples where the annotation

did not match our model’s prediction, and in some cases we found

sufficient evidence to conclude that the annotation was wrong—we

removed these cases from the dataset.

Algorithm 1 shows how groundtruth activities are assigned to

each GPS point. Since these timelines are in a different sampling rate

than the GPS points, we iteratively check each GPS point to deter-

mine their corresponding activity. In step 2 in Algorithm 1, for the

transition points, we check if a large gap is introduced by flipping

an assigned activity. For such cases, we reversed back the activity

to eliminate “teleportation" problems in training. The teleportation

phenomenon is defined in Definition 7 which is the distance of the

last and first transition points between two consecutive driving

events.

Algorithm1Algorithm toAssign Groundtruth Annotations to GPS Points

Input:
1) A GPS trajectory T ∈ T,
2) An annotated timeline A = {(𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 , 𝑎) } of activities
with start and end timestamps, and
3) An ambiguity threshold 𝜌

Output:
Trajectory T ∈ T with assigned activities.

Algorithm:
Step 1: Assign Activities to Each GPS Point

1: for each (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 , 𝑎) ∈ A do
2: for each GPS Point 𝑝 ∈ T do
3: if 𝑡 (𝑝) ≥ 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡 (𝑝) < 𝑡𝑒𝑛𝑑 then activity(𝑝) ← 𝑎

Step 2: Correct Ambiguous Annotations
4: for each 𝑝𝑖 , 𝑖 = 1, . . . , 𝑁 do
5: if activity(𝑝𝑖−1) = Driving and activity(𝑝𝑖 ) = Walking then
6: last-driving-index = 𝑖 − 1
7: if activity(𝑝𝑖−1) = Walking and activity(𝑝𝑖 ) = Driving then
8: next-driving-index = 𝑖

9: teleport-distance = 𝑑𝑖𝑠𝑡 (𝑝
last-driving-index

, 𝑝
next-driving-index

)
10: if teleport-distance ≥ 𝜌 then
11: 𝑝 𝑗 = Driving, ∀ last-driving-index < 𝑗 < next-driving-index

Figure 6: FACNet Architecture.

3.3 Model Architecture
To capture the intrinsic spatial and temporal relationships between

the GPS points, we developed a dual-layer bi-directional LSTM

model. Our proposed architecture takes a pre-defined window of

GPS points, i.e. sub-trajectory (6 minutes, 72 GPS points), with its 18

features which are min-max scaled to reduce the effect of outliers.

These windowed features are fed to an embedding layer, which

converts the continuous variables into a discrete valued vector. The

output of the embedding layer is used as an input to a bi-directional

LSTM module as well as an attention module which is used as a

sliding window and convolved with the output of the LSTM. Finally,

the convolved output from the previous layer is used in a decoder

layer to create the outputs. Figure 6 shows an illustration of the

𝐹𝐴𝐶𝑁𝑒𝑡 architecture.

Intuition: Recurrent Neural Networks are known to be suc-

cessful for learning tasks which use sequential datasets as input.

However, these also suffer from vanishing/exploding gradient prob-

lems. To eliminate these, they are supported by memory gates for

input and forget. These allow better control over the long-range

dependencies. This type of RNNs are known as Long Short Term

Memory (LSTM) networks [20]. By stacking two layers of LSTM

modules we provide better extraction of more intrinsic relation-

ships and using a bi-directional LSTM decision allows the model

see the past and future at the same time to predict the classification

of the current point, which is feasible since we use the network for

offline classification of already collected trajectories. In addition,

the attention module [14, 18] provides better performance by cap-

turing the importance of different embedded features within the

time window. Finally, the decoder module generates the outputs of

the classification with its two classes.

3.4 Model Training
In the model training, we used the hand-annotated ground-truth

data that we collected as described in 3.2. We used more than 800

hours of annotated trajectory data. Each trajectory is split to 72

GPS point sub-trajectories corresponding to 6 minutes.

The first few points of a sub-trajectory do not have past context

for the LSTM to utilize, which could make the LSTM predictions

less accurate at the start (similarly at the end) of the sub-trajectory.

To mitigate this, we stagger the sub-trajectories, so they overlap.

The first and last 2 minutes are used for context while the middle 2

minutes are used for scoring the model. Each point of the original

trajectory will appear in the middle section of exactly one sub-

trajectory, so no points from the original trajectory are discarded.
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Since our dataset was collected in North America, to help it gen-

eralize to countries with left hand traffic, we randomly flip the lon-

gitude (𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 → −𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) of 50% of the sub-trajectories.

While choosing the parameters for the model architecture, we

used the attention window length as 4 and embedding size as 12. We

used a dual-layer bi-directional LSTM architecture with 36 LSTM

units. We did multiple experiments with these hyper-parameters

and the ones reported are the best performing.

At the training stage, we used Learning Rate as 0.005, optimizer

as 𝐴𝑑𝑎𝑚𝑊 [9]. In addition, we also used cosine annealing learning

rate scheduling [8] to improve the performance of training.

Finally, the model was trained for 100 epochs and the training

data was split by 0.75 − 0.25 training/validation set.

4 EXPERIMENTAL EVALUATION
The objective of the experiments was twofold: To evaluate the

performance of 𝐹𝐴𝐶𝑁𝑒𝑡 with different settings as well as against

different metrics, and to compare its performance with a base-

line approach, i.e. a heuristic based approach. We picked a related

work [10] for comparison and evaluate its performance as well. To

achieve these goals, the following questions were asked (1) What

is the effect of different modules/LSTM cells over the model perfor-

mance? (2)What is the effect of the urban canyons versus residential

neighborhoods on the accuracy? While answering these questions,

we used multiple metrics, i.e. GPS point based accuracy, timeline

accuracy, gap/teleportation metric as well as point-to-line distance

metric. Next, we will describe the evaluation metrics in more detail

followed by the experimental results.

4.1 Metrics
The activity classification fromGPS points problem can be evaluated

from multiple metrics.

Definition 4. Point-based Accuracy: This is the metric used in
model training. It compares the ground-truth with the predicted class
of each GPS point and computes the proportion correctly classified.
Thus, it becomes

Accuracy𝑝𝑜𝑖𝑛𝑡 =
|𝑝𝑡𝑟𝑢𝑒
𝑊𝑎𝑙𝑘𝑖𝑛𝑔

|+ |𝑝𝑡𝑟𝑢𝑒
𝐷𝑟𝑖𝑣𝑖𝑛𝑔

|
|T |

In Figure 4, the GPS trajectory has 20 GPS points with 10 driving

and 10 walking points. Accuracy would be calculated for these GPS

points regardless of their class. A single point error will have the

same impact on point-based accuracy, regardless of whether the

error is located near an activity transition, or in the middle of an

activity segment, but these two cases might have different impact

on downstream applications that use classified GPS traces. For this

reason, we also devised a second metric, called segment accuracy,

defined below.

Definition 5. Segment (Same Modality Group) Accuracy:
Segment accuracy represents how many of the segments as defined
in Def. 2, i.e. the groups of GPS points with the same modality, are
correctly detected by the model. This specific metric makes more sense
in terms of high frequency of transitions between different modalities.
Due to minor differences, this metric may be misleading if used with
absolute differences between sets. To eliminate such issues, we add
an additional parameter, i.e. 𝜏 , that represent a tolerance (in terms of

Figure 7: Illustration of how distance to vehicle line metric
is calculated.

seconds) for the overlapping number of GPS points. Thus, the segment
accuracy can be defined as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑠𝑒𝑔 =
|𝑠𝑒𝑔𝑡𝑟𝑢𝑒

𝑂𝑛𝐹𝑜𝑜𝑡
|+ |𝑠𝑒𝑔𝑡𝑟𝑢𝑒

𝐷𝑟𝑖𝑣𝑒
|

|𝑠𝑒𝑔 |

In Figure 4, the GPS trajectory has 3 segments, i.e. 2 driving

segment and 1 walking segment. A perfect segment accuracy would

capture all 3 despite slight shifts which would be in a reasonable

error margin, i.e. 𝜏 .

Definition 6. Temporal Accuracy: Temporal accuracy aims
to understand the over/under estimation of timelines of activities. It
considers the fraction of time that was correctly predicted compared
to the entire duration of a trajectory. Thus, the temporal accuracy can

be defined as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑒𝑚𝑝 =
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑟𝑢𝑒

𝑂𝑛𝐹𝑜𝑜𝑡
+𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑟𝑢𝑒

𝐷𝑟𝑖𝑣𝑒

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛T

Large Scale Analysis Metrics: Despite the efforts to collect

ground-truth datasets in scale, it is hard to continuously collect such

data since it is labor-intensive and requires high effort. Therefore,

we developed two complementary metrics to mimic the perfor-

mance for a real world scenario. These metrics are not bounded

(0 ≤ 𝑚𝑒𝑡𝑟𝑖𝑐 ≤ ∞). Yet, they provide a sense of performance when

used together with the existing techniques especially in compara-

tive analysis.

Definition 7. Teleportation Distance: Teleportation metric, e.g.
gap distance, is the distance between the last transition point of a
driving event to the first transition point of the next driving event.
Logically, since the vehicles cannot drive by themselves, the end of a
driving event should also be the start of the next driving event. We
use this insight to calculate the average/minimum/maximum tele-
portation distances for each GPS trajectory. This metric cannot be
used alone. Suppose all GPS points are classified as driving, teleporta-
tion distance will be 0. Therefore, we complement this metric with an
additional metric, i.e. distance to vehicle line.

Figure 4 shows an example teleportation event in green. The

gap between the last and first point of the two driving events,

represents the aforementioned metric. It is worth noting that due to

the sampling rate, e.g. 5 seconds, as well as the imperfection of the

GPS sensors, we do not expect the teleportation distances to be 0m

as in an ideal scenario. However, empirically we saw that, especially

for comparative analysis purposes, the teleportationmetric is a good

indicator of the model performance.

Definition 8. Distance to Vehicle Line: Assuming an on-board
GPS sensor is available on a vehicle and the GPS data to be classified
is collected from a smartphone, we expect these two data to move
together for driving events, and diverge for walking events. Using this
idea, we developed another metric, i.e. distance to vehicle line, which
calculates the perpendicular distance of each GPS point to the line
that is generated by the trajectory collected from the vehicle. Next, we
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LSTM Units LSTM Layers Accuracy Loss

12 3 0.93 0.15

12 2 0.91 0.18

18 3 0.94 0.165

18 2 0.94 0.155

24 3 0.95 0.12

24 2 0.95 0.127

28 3 0.95 0.115

28 2 0.95 0.105

32 3 0.95 0.105

32 2 0.96 0.099
64 3 0.94 0.116

64 2 0.95 0.114

Table 1: Experiments with the varying LSTM cells/layers.

group these to collect the highest distance. For a good classifier, we
expect this number to be low for driving classified points and larger
for walking classified points.

An illustration of the proposed distance to vehicle line metric

is shown in Figure 7. Assuming the black line is a Vehicle GPS

trajectory that was converted to a line, the driving GPS points

should be closer to the line andwalkingGPS points should be farther

away. It is important to note that due to the noise associated with

the GPS data, we expect to have occasional divergences. However,

if multiple classification approaches are compared side by side, we

expect to have a better distinction using this metric.

The metrics introduced in Definition 7 and Definition 8 allow us

to compare models over large scale datasets without ground truth

annotations.

4.2 Experimental Dataset
For the experiments, we chose 50 GPS trajectories with more than

> 100 transitions each from driving to walking and driving to walk-

ing. The trajectories were selected to cover areas with different

characteristics, such as downtown, rural, residential, etc. All trajec-

tories are ≥ 5 hours in length and all were sampled with 5 second

intervals.

4.3 Self Evaluation
4.3.1 Effect of number of LSTM cells on the model performance: In
this experiment, we increased/decreased the number of layers/cells

for LSTM architecture to find the best parameters in an empirical

way. Table 1 shows that the model performs best when the number

of LSTM cells are 32 and there are 2 layers. The accuracy number

presented here indicates point pairwise accuracy which is at 96%

with the proposed parameters.

4.3.2 Effect of Attention Module: To understand the performance

with the usage of the Attention module, we trained the model with

and without the attention module and compared the results. Table 2

shows that the performance improves by the usage of the attention

module. Even though the change is not drastic, improved perfor-

mance may mean less confusion especially for the classification of

transition points.

4.3.3 Distribution of Accuracies: To understand the performance of

the model, we calculated the distribution of the point-wise, segment

Attention Module LSTM Units LSTM Layers Accuracy Loss

With 32 2 0.96 0.099
Without 32 2 0.95 0.107

Table 2: Experiments with/out Attention Layer.

Accuracy

Number of trajectories

point-wise acc. segment acc.(𝜏 = 10) temporal acc.

1 - 8 -

0.99 - 18 -

0.98 5 9 4

0.97 13 9 12

0.96 10 2 9

0.95 7 2 7

0.94 10 2 11

0.93 3 - 5

0.92 2 - 2

Table 3: Point-based Accuracies for the test trajectories.

Method Min Acc. Max. Acc. Mean Acc. Median Acc.

FACNet 0.92 0.98 0.96 0.96
Related Work [10] 0.82 0.94 0.88 0.88

Heuristic (3mph) 0.69 0.92 0.84 0.84

Heuristic (5mph) 0.81 0.94 0.88 0.88

Heuristic (7mph) 0.77 0.91 0.85 0.86

Table 4: Point-wise Accuracy comparison.

(𝜏 = 5𝑠) and temporal accuracies over the 50 GPS trajectories.

Table 3 shows the results. From all these metrics perspective, the

model performed with 96% median accuracy. This shows that the

model consistently performed well and stably across different types

of geographies. As a side note, the total number of stops across all

these 50 trajectories is 5726 and the total duration is 380 hours.

4.4 Comparative Evaluation over Accuracy
We conducted a comparative analysis with a heuristic as well as a

state-of-the-art [10] model. The related work in [10] uses a stacked

Convolutional LSTM architecture to discover intrinsic relationships

in the data. It uses 3 sets of inputs, i.e. 4 features (velocity, accel-

eration, bearing change, jerk) generated from the GPS data, deep

features created using these, and finally optional weather related

information. Since we did not have the weather related data avail-

able for our training dataset, we omitted it from model training and

evaluation. Authors in the [10] claim this specific input increases

the performance by 1−3%. In addition, since the model code was not

openly available, we replicated the architecture (Section 3 and Fig-

ure 2 in [10]). Finally, to have a fair comparison, we used the same

training and test datasets that are used in our proposed approach

for the training of the related work [10].

For heuristic approach, we used a relatively simple approach

which calculates point pairwise speeds, followed by 3, 5, 7 mph

thresholds to classify GPS points.

Table 4 shows that the proposed approach performs much better

than the other approaches in terms of the minimum, maximum,

mean and median point-wise accuracies. Despite the highly com-

plex architecture of the related work, the performance was not
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Method Min Acc. Max. Acc. Mean Acc. Median Acc.

FACNet 0.92 0.98 0.96 0.96
Related Work [10] 0.81 0.94 0.88 0.88

Heuristic (3mph) 0.68 0.92 0.83 0.84

Heuristic (5mph) 0.81 0.93 0.87 0.88

Heuristic (7mph) 0.78 0.91 0.86 0.86

Table 5: Temporal Accuracy comparison.

Figure 8: Experiments with the teleportation metric for a
large scale set of GPS trajectories. The related work is [10]
with the additional improvements described in [5].

significantly better than the heuristic approaches. This may be due

to the fact that the features generated for the related work were

similar and movement oriented features, i.e. speed, acceleration,

jerk. Therefore, in some cases, these failed to capture the context

of the movement.

In our final comparative analysis, we evaluated the temporal ac-

curacies for each model. In Table 5, it can be seen that the temporal

accuracy performance is very similar to the point-wise accuracies

in Table 4. This is expected since the sampling rate of the GPS

points cause these numbers to be very similar apart from minor

perturbations. However, overall both tables show that the proposed

approach significantly outperforms all other methods.

Segment accuracy (for walking) comparisons are omitted since

with a sufficiently low speed limit, the heuristic approach can detect

all walking patterns. Without the use of the other methods, the

segment accuracy may not be a good indicator for comparative

analysis.

4.5 Comparative Evaluation over Teleportation
Distance

While using groundtruth data is highly accurate to understand the

model performance, it is hard to scale. Therefore, for a large scale

comparison, we decided to evaluate the model performance using

the newly proposed teleportation distance metric. For this experi-

ment, we used 5000 GPS trajectories. Each of these is collected for

an entire day (> 6 ℎ𝑜𝑢𝑟𝑠) from smartphone GPS sensors. Figure 8

shows the cumulative distribution function (CDF) of the gap dis-

tances. The plot indicates that > 90% of the walking classifications

have < 20𝑚 teleportation gap. Our proposed approach significantly

outperforms both the related work and the heuristics approach on

the teleportation gap metric.

(a) (b)

Figure 9: Comparison of the distributions of the distances to
the vehicle lines. The left side shows the distribution with an
heuristic approach whereas the right side shows the metric
from the FACNet approach.

Figure 10: Model performance in a cul-de-sac when a vehicle
moves slowly.

4.6 Comparative Evaluation over Distance to
Vehicle Line

For the next experiment, we collected 386 GPS trajectories from

65 vehicles, and coupled these with the GPS trajectories collected

from smartphone sensors, to obtain trajectory (vehicle and smart-

phone) pairs spanning an entire day. Table 6 shows the results.

Ideally, when a smartphone GPS trajectory is classified, we expect

a difference of average vehicle line distances between walking and

driving classified points. However, it should be noted that when a

vehicle stops, the person who starts walking will be closer to the

vehicle GPS trajectory line before walking away. Therefore, instead

of considering the distances in meters, comparison with relative

average distances of the classes makes more sense. In this example,

we see that the differences are substantial, i.e. 2.3× vs. 1.3×.
We also calculated these using a per trajectory pair (vehicle

and smartphone) basis. Figure 9 shows how these distances are

distributed. It can be seen from the comparative plots that the

FACNet provides a better distinction than a heuristic approach.
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Method Location # of Drivers # of Trajectories

Walking class Avg.

Distance to Vehicle Line

Drive class Avg.

Distance to Vehicle Line

Difference

FACNet

Seattle, WA 30 191

9.25 m 4 m 2.3x

Heuristic (7mph) 5.97 m 4.69 m 1.3x

FACNet

Twin Cities, MN 35 195

7.3 m 3.2 m 2.3x

Heuristic (7mph) 5.3 m 3.7 m 1.4x

Table 6: Comparison between the distances to the vehicle lines.

Figure 11: Model performance in a residential neighborhood when there are houses side-by-side.

(a) (b) (c)

Figure 12: From left to right, input GPS points, the output from FACNet and finally the output with additional contextual
information, i.e. connected GPS points that are overlaid on satellite image.

4.7 Qualitative Examples
Finally, we also visually inspected the outputs to understand the

model performance with context (i.e. underlying roads, buildings,

etc.). Figure 11 shows a residential neighborhood. In this exam-

ple, the Driving classified GPS points are represented with Blue

and Non-Driving are depicted with Red. GPS points are connected

with white lines to indicate their temporal order. Overall, the ex-

ample shows that the model perfectly captured the 6 stops in a

residential neighborhood without merging any together. With a

heuristic approach, these would either split into more stops (with

lower threshold) or merged together (higher threshold) causing a

loss of the contextual information about these stops.

Figure 10 shows another example in a cul-de-sac. As can be seen,

FACNet output on the left can capture the slow-down on the short

road segment after turn whereas the heuristic method classifies

such slow-downs as walking.

We also want to emphasize the importance of any additional data

that can be used in the future to improve the model. Figure 12 shows

this over an example. Figure 12(a), the input GPS points are depicted

with yellow. It is evident that without contextual information (e.g.

road network, building outlines, etc.), the output is hard to interpret.

Figure 12(b) shows the output from FACNet for these data. Despite

the linearity of Driving (blue) GPS points that may overlay with

the roads, without additional context, it is still hard to extract any

valuable insights. Finally, Figure 12(c) shows the output with a
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satellite image as a basemap as well as connects the GPS points with

white lines. Using this contextual information, it can be seen that

the model performed pretty well even under heavy noise. Also, the

Figure shows how, in the future, additional contextual information

can be used to further refine the proposed approach.

5 CONCLUSION AND FUTUREWORK
Classifying human activities from GPS trajectories is needed for

use cases where additional sensor input may not be available. GPS

data, collected from smartphone sensors, includes noise which

is exacerbated at lower sampling rates, making the classification

problem a difficult one and an active research topic. However, ex-

isting approaches either use additional sensor inputs besides GPS

locations, make restrictive assumptions or cannot handle the sit-

uations involving frequent transitions between different activity

classes. In this paper, we tackled the case where transitions be-

tween modalities are frequent. We proposed a deep neural net-

work approach, 𝐹𝐴𝐶𝑁𝑒𝑡 , which predicts frequently switching trip

modalities with high accuracy. Our proposed approach uses only

Longitude/Latitude/timestamp data, but is flexible enough to be

extended to include additional inputs. Our experiments show that

the proposed approach outperforms the existing state-of-the-art

as well as a heuristic approach. To evaluate performance on large-

scale data, we introduce two new metrics, Teleportation Distance

and Distance to Vehicle Line, which do not require hand-annotated

ground truth.

In the future, we plan to extend 𝐹𝐴𝐶𝑁𝑒𝑡 from two different per-

spectives. First, we plan to enrich the input features with additional

data. Such data will not be limited to additional smartphone data,

which has also been used in past research, but include additional

geospatial context such as the building outlines, underlying road

network, etc. Second, we plan to work on inferring finer sub-classes

of driving and walking. For example, walking can be further clas-

sified as being near the vehicle (e.g. in unloading or gas refilling)

or away from it, and driving can be further classified as transit,

looking for parking, stopped at signal, etc.
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