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ABSTRACT
Drivers nowadays expect increasingly more from their navigation
systems. For this reason, navigation software providers move to-
wards offering more sophisticated and context-aware solutions. At
the same time, the global report from WHO on road safety shows
increasingly alerting number when it comes to modern traffic. Thus,
reducing the likelihood of road traffic accidents is an important
and timely topic. In this paper, we explore the use of the Network
Kernel Density Estimation (NKDE) and the Temporal Network Kernel
Density Estimation (TNKDE) functions, which, as opposed to the
plain KDE methods, utilize road network graph data, as basis for
identifying and generating safer routes. We evaluate our approach
using a traffic accident dataset for the city of San Francisco against a
vanilla two-dimensional Kernel Density Estimation and a K-Means
clustering method. Furthermore, we investigate the role of the de-
gree of severity of the accidents and its impact on the overall result.
Our work shows that (T)NKDE-based methods can be used for
identifying safer routes in a road network without compromising
on the overall trip distance and duration.
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1 INTRODUCTION
Based onWHO’s Global status report on road safety [24], road traffic
accidents have become the 8𝑡ℎ leading cause of death for people of
all age groups and the 1𝑠𝑡 cause of death for children and young
adults aged 5-29 years old. Overall, we’re facing a total number of
more than 1.35million traffic deaths each year, an unacceptably high
number for the modern society we leave in. It is self-explanatory
that every effort aiming at lowering this number as much as possible
and as fast as possible is of significant importance. This can be
achieved in various ways. For instance by launching campaigns
and enforcing legislation measures on WHO’s identified key risk
factors such as on speed limits, drug- and drink-driving as well as
on helmet, seat-belt and child restraint usage in a more unified and
consistent way around the globe. A large number of traffic incidents
is attributed to the road infrastructure and road characteristics
[25, 28]. Existing road safety rating systems help monitor the road
quality and identify high risk roads and rank them by the crash
likelihood and severity. On the one hand, the resulting insights
can be used to improve the road design, which can have a massive
positive effect on the traffic accident statistics. On the other hand,
the results can be used for managing and redirecting the traffic in
order to avoid dangerous hotspots. Intelligent traffic management
and re-routing is doubly important since the traffic volume (as a
ratio to the road capacity) is an important risk factor itself [6, 11, 41].
At the same time, redirecting the traffic at a single-user level can
be equally important. A fact that resonates with the recent hype
in the research literature around risk-aware routing and direction
services that take safety explicitly into account.

In its first part, this work goes through the literature and high-
lights the most related recent work (Section 2). The second part
introduces, describes and evaluates our approach for deriving the
safest routes as well as its impact on travel time, travel distance
and carbon emissions against a number of conventional methods
(Section 3). Finally, in our conclusion and future work section we
summarize our findings and discuss potential future work items
(Section 4).

2 RELATEDWORK
Finding and recommending the safest routes in a pedestrian, cyclist
or driver navigation scenario, is a relatively new but increasingly
discussed topic in the research community. We can distinguish
two types of safe route recommendation systems. The first type
includes systems that are closely interlinked with the underlying
routing algorithm and route generation process. That is, systems
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that influence the typical edge selection process during the route
composition phase. The second type represents approaches that are
build on top of the routing engine as an additional layer and help
rank and highlight the returned routes with respect to the associ-
ated risk or safety. In addition, safe routing titled papers address
primarily two major risk root causes while navigating through
a road network, namely traffic accidents and crime, whereas the
latter concerns mostly pedestrian navigation scenarios with some
of them relying on crowd-sourced data or on mining social media
as seen in [16, 29] and [8, 18] respectively. Despite the different
risk reason, crime-related papers often share similar strategies for
avoiding the risk areas along a user’s route and thus, making many
of them relevant to our work and worth mentioning. This section
references the ones that are most closely related to our approach.

A recent study suggests that eliminating left turns can signif-
icantly reduce the accidents risk [5]. Thus, finding a safer route
can be as easy as picking the route that has fewer left turns! But
before calling it for the day, let’s take a look how this can be further
improved by taking a more data-driven approach. With CrowdPath
for instance, Hendawi et al. present a framework for a crowd-based
routing engine [15]. Their framework operates upon the result of a
set of potential route providers and uses volunteers’ data to gen-
erate routes that reflect the choice of local drivers. At the same
time, their time-dependent architecture supports taking into ac-
count a number of risk factors such as crime and accident risk,
although they rather include the implementation and evaluation of
this feature into their later work PreGo [12–14]. PreGo constitutes
an evolved and more mature version of CrowdPath in which users
are allowed to both provide their preferences with respect to travel
time, distance, risk and number of services that can be found along
a route as well as to contribute with their own data (e.g., report an
accident at a certain location). Apart from PreGo itself, their work
in [12] includes an interesting user study about the users’ route
selection criteria. Their study shows that the drivers’ preferences
with respect to a route’s travel time, safety, "scenicness" and utility
varies massively based on the trip scenario (commute vs. shopping
vs. vacation trip), on the time of the day and the day of the week,
as well as on the gender of the driver. Both CrowdPath and PreGo
seem not to take the distance between the route segments and
the risk source into the risk factor estimation process. Aljubayrin
et al. on the other hand, describe an algorithm that does exactly
that [3]. Their work introduces the notion of so-called safe zones
and preferred zoned and their algorithm navigates users through
a route that minimizes the distance travelled outside of them. A
safe zone might be a village in a desert or a neighborhood near
a police station and their location is defined by the authors, as
opposed to our data-driven approach that generates safe areas via
spatial point pattern analysis. Makarova et al. focus on safe routes
specifically for pedestrians and cyclists in cities as a way to reduce
the number of road accident victims [20]. Their work on pedestri-
ans and cyclists aligns in a certain way with the global long-term
efforts, programs and case studies on promoting and identifying
Safe Routes to School (SRTS) for children (and not only) using their
bike or going on foot [22, 32, 37]. Krumm and Horvitz introduce in
their work a probabilistic method to calculate the crash risk on any
road in a given road network as a function of the traffic volume, a
set of road attributes and a set of environmental conditions [19].

The inferred risks based on the identified probability distributions
flow as costs into a Dijsktra-based route planner to generate the
safest routes. In addition, their work studies the trade-offs between
safety and the route’s total distance or travel time. In contrast to our
work, their work relies on parametric statistics and does not take
into account the severity of the traffic incidents, though it is men-
tioned in their future work section. Soni et al.’s method [31] on the
other hand takes the incident’s severity degree into account. Their
work considers both crime and accidents to generate risk scores
along a route, while assigned author-defined weights let the corre-
sponding severity flow into the overall risk score. Moreover, Soni
et al. make use of a clustering method to infer high risk areas from
the available data. Clustering has been proven to be an adequate
data mining method as also seen in [1]. In particular, Soni et al.’s
method applies a nested clustering algorithm in combination with
a distance-aware kNN regression (as opposed to our KDE function)
to describe a set of routes by their safety. The kNN regression, with
k an author-defined system parameter, let’s the distance between
a route segment and the identified risk clusters play a part in the
risk assessment, however, their work doesn’t seem to address time
dependency as we do in this paper. Galbrun et al.’s work focuses
on reducing the crimes rather than the traffic accident risks dur-
ing an urban navigation scenario [9]. A kernel function is used
for computing the crime probability on each route edge, which in
turn is assigned as an additional cost to a Dijkstra-based routing
algorithm. At the same time, the authors lay particular weight on
finding a computationally optimized algorithm and they study var-
ious strategies such as early stopping and path set pruning for this
purpose. Finally, their work highlights the importance of taking
into account the population density and the temporal dimension.
However, both aren’t handled in their paper and are referred to
as future work. Furthermore, they use the simpler planar KDE as
opposed to our network-based KDE. Asawa et al.’s paper is also
focusing on determining the likelihood of a criminal offense along a
certain route [4] . Like some of the previously mentioned work, they
too use clustering to identify criminal hotspots. A predetermined
radius is used to define the nearest clusters to the route, while the
number of the crimes as well as the type of the crime within each
cluster affects the overall risk score. Unlike aforementioned work,
their method lets user profile information (age and gender) flow
into the risk assessment process through a Bayesian Network that
computes the likelihood of an individual becoming a crime victim
at a given time. In order to achieve this, users are being asked to
provide the corresponding information when signing up into their
tool. Finally, a special group of papers, such as [34, 42] to name but
a few, address the problem of transportation of hazardous materials
and how to find the safest route for both the driver but also the
people that reside near the route in terms of exposure and release
of dangerous material .

The work presented in this paper attempts to combine in a
joint approach the individual missing elements from the afore-
mentioned related work and explores a static as well as a dynamic,
time-dependent Network-based KDE as a means for identifying
less accident-prone paths on a road network, while keeping an eye
on the severity degree of the traffic incidents in the available data
at the same time.
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3 NETWORK KERNEL DENSITY ESTIMATES
(NKDE) FOR SAFER ROUTES

This section goes through the main spatial pattern analysis methods
that were applied on an US traffic accident dataset on our way
to ultimately exploring and defining the Network Kernel Density
Estimate (NKDE) to be the basis for our safe routes layer. Based
on the literature, we focused primarily on clustering and kernel
density based methods.

The US Accident dataset [21] that we used for our experiments
spans over many years, namely from 2016 to 20211 and comprises
about 2.8 million accident records. Apart from expected seasonal
variances and despite the Corona-related pandemic during the last
2 years of the dataset, the data show a certain consistency, which
we assume to be sufficient for extracting meaningful insights out of
the data. So, apart from basic checking through the data for empty
values or unreasonable outliers, no other data have been removed
during our preprocessing step. In this work, we selected the region
of San Francisco city to explore and evaluate our method. It could be
noted here, that traffic data like these become increasingly available
from official municipal and other government authorities around
the world. At the same time, similarly useful data, such as critical
driving behaviour and patterns, can be successfully inferred and
generated from vehicle or driver datasets, as already seen in the
literature [2, 7, 17, 36].

3.1 K-Means Clustering Analysis
Clustering methods represent a simple and intuitive unsupervised
way for identifying spatial patters in geospatial data. K-Means
stands out as a computationally efficient method (with a linear
complexity 𝑂 (𝑛)), frequently used in scenarios like ours, as we
have seen previously in the RelatedWork section.We used K-Means
to get a first impression of the available traffic incident data and
evaluate whether this could be useful for our safe routes approach.

K-Means needs a predefined number of clusters 𝑐 . We tested
various values and made our selection (𝑐 = 4) based on the Elbow
method (see Fig. 1).

Figure 1: Applying the Elbow method to define the optimal
number of clusters.

If we apply K-Means with 𝑐 = 4 cluster centroids we get the
image in Fig. 2. Fig. 2 shows the traffic incidents projected on top
of the road network of San Francisco colored based on their cluster.
1Stand 08/26/2022

The yellow circles represent the 4 clusters, that is, the location
of their centroids, whereas their size is analog to the number of
incidents belonging to each cluster. We can see that the clustering
approach provides certain insights into the 4 most problematic
areas in the city, the areas around the Golden Gate and the Bay
bridge, as well as around the high traffic highways 101, 280 and
80. However, using these clusters for identifying low-risk roads in
terms of accidents by a distance/radius-based approach as seen in
crime-related safe route literature seems rather like a long shot.
Even if for some cases looks relatively reasonable, like for the case
of the largest cluster on the north-west side of the city, where the
traffic incidents are spread along many roads in a somewhat circular
way. For all the other cases, a distance-based approach from the
centroid would naively assign high risk values to safe roads, just
because being close to a a road that is indeed dangerous. This might
make more sense in a pedestrian navigation scenario for avoiding
high-risk crime regions, but less for our driving scenario. Our high-
risk areas need to be defined in a much higher precision than that.
This is where the Kernel Density Estimation might be helpful.

Figure 2: Traffic accident K-Means clusters in San Francisco
from 2016 to 2021. The size of the (yellow) cluster centroid is
analog to the number of accidents belonging to that cluster.

3.2 Kernel Density Estimation (KDE) Analysis
Kernel Density Estimation (KDE) is a sample- and kernel-based
non-parametric statistical method for estimating the probability
density function of a random variable, which in turn reflects its
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occurrence probability. KDE is a handy tool that relieves as from the
need to make assumptions about the distribution of our data and the
corresponding statistical tests to confirm (or not) our hypothesis.
It uses kernels, which in the 2-dimensional case (i.e., in the case of
geospatial points) are typically smooth, circular, bell-alike curved
surfaces, that are slid and fitted along a grid area defined by our data
sample in order to identify low- and high-density sample regions.

The general formula of a planar 2-dimensional Kernel Density
Estimation function for a location point 𝑝 (𝑥,𝑦) is given by Eq. 1
[38]:

𝐷𝑒𝑛𝑠𝑖𝑡𝑦2𝐷 =

𝑛∑︁
𝑖=1

1
𝜋𝑟2

· 𝑘 · 𝑑𝑖
𝑟

(1)

where 𝑖 are the location points in the available data sample that lie
within the radius 𝑟 (aka bandwidth) from point 𝑝 , 𝑘 is the Kernel
function that returns a weight for the point 𝑖 at distance 𝑑𝑖 based
on the ratio between 𝑑𝑖 and 𝑟 and 𝑑𝑖 is the distance between the
point 𝑖 and 𝑝 .

Equation 2 describes a version of a 2-dimensional Kernel Density
function that uses the frequently used Quartic function as its kernel
to estimate the density of a location point 𝑝 (𝑥,𝑦) as found in [30]
and implemented in various GIS tools2.

𝐷𝑒𝑛𝑠𝑖𝑡𝑦2𝐷𝑄𝑢𝑎𝑟𝑡 (𝑝) =
1
𝑟2

·
𝑛∑︁
𝑖=1

©« 3𝜋 · 𝑝𝑜𝑝𝑖

(
1 −

(
𝑑𝑖

𝑟

)2)2ª®¬ (2)

where 𝑖 are the location points of interest in the available data sam-
ple that lie within the radius 𝑟 (aka bandwidth) from point 𝑝 , 𝑝𝑜𝑝𝑖 is
an optional weight parameter of the point 𝑖 called population field,
and 𝑑𝑖 is the distance between the points 𝑖 and 𝑝 . Beside choosing
an appropriate kernel, the selection of the bandwidth 𝑟 is important
for the performance of the KDE and an optimal bandwidth value
is often found by making use of thumb rules that rely on statisti-
cal metrics such as the mean and the standard deviation applied
on available sample points. Narrow bandwidths help unveil local
phenomena, while a wider bandwidth rather highlights hospots in
large areas.

We experimented with various kernels. Fig. 3 shows the results
of 2-dimensional kernel density estimation function that uses an
axis-aligned bivariate Gaussian kernel evaluated on a square grid.
We used the R library MASS and the default bandwidth is based
on a thumb rule found in [35] that in turn relies on the 25𝑡ℎ and
the 75𝑡ℎ quantile of our sample. It can be clearly seen that KDE
helps define the high accident risk zones much more precisely than
K-Means in the previous section. It covers the 4 high risk areas
from K-Means in a more compact and decisive manner and leaves
a big part of the irrelevant safer roads out of its range. It seems
reasonable and feasible to use the resulting traffic incident densities
assigned as weights to the set of streets lying underneath the KDE
to help a routing algorithm avoid those and find safer alternative
routes. However, Fig. 3 also shows some bandwidth-coverage trade-
off limitations of the KDE approach when it occasionally misses to
highlight a few significant accident-prone street segments as well
as a small portion of significant scattered points that lie away from

2R Sp, ArcGIS Pro, ..

Figure 3: KDE traffic accident density distribution projected
on the San Francisco road network.

the hotspots. At the same time, even with this compact hotspot
representation, KDE indicates a number of streets as risky just
because these are geometrically closer to the actual risky roads,
similar to the aforementioned K-Means distance-based approach.
Although in a much smaller degree, it is still not optimal and there
is space for improvement.

Aiming at tackling the missing accident areas, we experimented
with a rastered version of KDE. Fig. 4 shows an attempt to map
Gaussian KDE density values to 2𝑘𝑚 × 2𝑘𝑚 grid cells projected on
the road network. This rastered approach makes density variations

Figure 4: Rastered KDE traffic accident density distribution
projected on the San Francisco road network.

across the city more visible and the resulting cells can then be used
29
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for the path costs generation in the routing algorithm. By tuning the
grid resolution we are able to tune the level of precision, eventually
reaching the level seen in Fig. 3, which would bring us to a similar
bandwidth-coverage trade-off issue.

All in all, KDE showed promising results, but it still led to artifacts
were safe roads are considered to be of a high risk. It lacks the
precision that is required for a traffic scenario such as ours. Mostly
because like K-Means it doesn’t take the underlying road network
into account. Traffic bound to road networks doesn’t move to all
360◦ directions, that is, it isn’t isotropic, as is the assumption for
above techniques that use the Euclidian distance. Here is where the
Network KDE comes in place (Section 3.3).

3.3 Network Kernel Density Estimates (NKDE)
While the common 2-dimensional KDE estimates densities over
area units, the Network Kernel Density Estimation (NKDE) technique
estimates densities over a linear unit via a lixelization process [38].
This enables it to use a network space, such as a road network, as
the data point event context for the events we want to estimate
the densities, e.g., the traffic incidents in our case. Eq. 3 shows the
Network KDE function for a location point 𝑝:

𝑁𝐾𝐷𝐸 (𝑝) =
𝑛∑︁
𝑖=1

1
𝑟
· 𝑘 · 𝑑𝑖

𝑟
(3)

where 𝑖 are the location points of interest (e.g., the traffic incidents)
in the available data sample that lie within the radius 𝑟 (aka band-
width) from point 𝑝 , 𝑘 is the Kernel function and 𝑑𝑖 is the distance
between the point 𝑖 and 𝑝 . It can be seen that by eliminating the
𝜋𝑟2 term from the general KDE (Eq. 1) and replacing it with 𝑟 , this
function now estimates the density over a linear unit, e.g., a road
segment. Moreover, both the bandwidth selection process and the
kernel function use the network distance (instead of the Euclidian
line of sight distance). This is done by integrating a shortest path
calculation step into the NKDE algorithm. As with the conventional
KDE, the choice of the Kernel and the value of the bandwidth have
a significant impact on the result. On top of that comes the search
for the optimal length of the so called lixels that NKDE generates
in a preprocess step and uses to sample the underlying the road
network. Since the first NKDE paper in 2008, a number of NKDE
variations have been proposed that try to improve the limitations of
the first paper, such as overestimation of densities at intersections
and artifacts caused by network loops smaller than the bandwidth
as found in [23, 33], to name but a few. However, it should be
noted that the improved algorithms often come with the cost of a
higher complexity and computational time. For our experiments
we used the spNetwork library in R that includes 3 different NKDE
implementations [10].

After experimenting with various kernels, bandwidth values
and lixel sizes, we reached to the result shown in Fig. 5 by using a
Quartic kernel with a bandwidth of 300m and a lixel size of 200m
with a minimum cut-off distance of 50m. Regarding the network
data used in our model, We queried our San Francsico road network

Figure 5: NKDE traffic accident density distribution projected
on the San Francisco road network. (Note: The density values
were scaled up for a clearer visualization)

graph fromOSM3 via the overpass API45 by providing the bounding
box found in Fig. 6.

(a) (b)

Figure 6: (a) Bounding box over the city of San Francisco
defining our area of interest. (b) ExtractedOSM road network.

We can see from Fig. 5 that NKDE gives us a very precise repre-
sentation of the accident-prone streets in the road network of San
Francisco, which in turn reflects the likelihood of a traffic accident
in those areas. The precision is by far more superior to the one
provided by the standard KDE and fits much better to our goal,
namely, to navigate the user through safer routes.

Now that we have the network density matrix generated, we can
use its values to assign weights to the edges of our road network
graph and start deriving our safer routes. However, if we used the
3https://www.openstreetmap.org/
4https://wiki.openstreetmap.org/wiki/Overpass_API
5http://overpass-api.de/

30

https://www.openstreetmap.org/
https://wiki.openstreetmap.org/wiki/Overpass_API
http://overpass-api.de/


NKDE and TNKDE for safer routes IWCTS ’22, November 1, 2022, Seattle, WA, USA

generated accident risk-specific densities as sole weights in a path
finding algorithm such as Dijkstra we would end up with a certain
number of rather extreme results. Fig. 7 shows such an extreme
example route. The reason is obviously because of the routing

Figure 7: Extreme example of anNDKE-based safe route from
an origin (green) to a destination point (orange) that ignores
the length of the route.

algorithm trying to avoid all the risky streets as shown in Fig. 5
without exception and without taking the route’s total distance into
account. Fig. 8 shows the distance-only weight distribution of the
road network edges for the sake of comparison.

A better model would allow both the degree of safety and the
length (or the duration) of the route flow into the route selection
process. We decided to explore this multi-objective optimization
problem by defining the following weighted linear relation for
computing the total combined weight (i.e., cost) of an edge in the
network:

𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙 (𝑒𝑔𝑑𝑒) = 𝛼 ·𝐶𝑜𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ + 𝛽 · 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑁𝐾𝐷𝐸 (4)

where 𝛼 and 𝛽 are weight coefficients balancing the trade-off be-
tween the (normalized) edge’s NKDE density value and its length.
These could be either manually adjusted by the user or automati-
cally inferred based on the user’s habits and preferences. For normal-
izing the two types of weights we applied Min-Max normalization.
We evaluated the following 3 combined 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑠𝑎𝑓 𝑒𝑡𝑦 scenarios
against the fastest route in terms of total distance, travel duration
and environmental impact: 25/75, 50/50, and 75/25. The evaluation
was done on a sample of 200 random origin-destination points and
we used the Dijkstra algorithm to find our optimal paths.

In order to evaluate the environmental impact, wemake the naive
assumption that the user drives a typical modern medium-sized

Figure 8: Distance-based edge weight distribution projected
of our San Francisco road network graph.

gasoline vehicle and apply the distance-based formula found in the
2018 Greenhouse Gas Emissions from a Typical Passenger Vehicle6

document written by the U.S. Environmental Protection Agency
(EPA), which is given by Eq. 5:

𝐶𝑂2𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒 =
𝐶𝑂2𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛
𝑀𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛

=
8, 887
22.0

= 404 [𝑔]
(5)

This equation is rather simplistic and does not consider further
significant factors like the type and size of the vehicle, the driving
behavior of the driver, the elevation changes and other road prop-
erties, the weather and similar context information. Nevertheless,
it allows us a rough approximation that can be indicative towards
the true values. For calculating the travel times, we assumed that
the user is driving in a constant speed equal to the speed limit and
we divided the edge distances by the speed to get the respective
traverse times. Keeping the travel times short is important because
longer travel times may lead to driver fatigue and raise the accident
risk [26, 39, 40].

The results of our evaluation can be found in Fig. 9. As expected,
we can see that the 100% safe routes stand out by showing the
longest overall travel distances and duration, as well as the highest
carbon emissions. This relatively large difference comes from ex-
treme routes like the one seen in Fig. 7. Things change and become
much smoother once the distance is included in the weight equa-
tion. The trend remains, once again as expected, clearly descending,
where all three metrics decrease the more weight we lay on the
distance and favouring in this way the shorter paths in our road

6https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-
vehicle
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Evaluation results with respect to: Total travelled
distance (a,b), Total travel time (c,d) and CO2 impact (e,f) by
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑠𝑎𝑓 𝑒𝑡𝑦 weight ratio with 𝑠𝑎𝑓 𝑒𝑡𝑦0meaning distance-
only generated routes (i.e., the shortest paths) and 𝑠𝑎𝑓 𝑒𝑡𝑦100
NKDE density-only routes. The images on the right (b,d,f) show
the 4 rightmost of the 5 box plots found in the corresponding images
on the left and help to better observe the descending trend.

network. Interestingly, the times and the distances are not that
different when using a combined cost approach compared to the
fastest route. For instance, our evaluation shows that the median
difference in travel time between the 50% safe routes (𝑠𝑎𝑓 𝑒𝑡𝑦50) and
the fastest routes (𝑠𝑎𝑓 𝑒𝑡𝑦0) is only 2.49𝑚𝑖𝑛! And the corresponding
difference in terms of travel distance is just 1.67𝑘𝑚. Hence, our
findings show that the NKDE-based traffic incident risk analysis
can indeed be used together with the distance (and eventually other
types of cost) to provide reasonable, safer, not too long and not too
environmentally harmful routes. Fig. 10 underpins our findings in
a visual self-explaining way for a sample route.

The US traffic accident dataset that we use for our evaluation
categorizes the traffic accidents based on their severity with 1 in-
dicating the least impact on the traffic and 4 a significant impact
on the traffic (e.g., long delays). Letting the degree of severity flow
into our safe route generation process could help fine-tune our
suggested routes and at the same time make them more robust
against the eventuality of long delays. For this reason, we explored
the application of NKDE on separate single severity degree data
only. In addition, we further explored a weighted form of NKDE,
using the severity degree as weights and we compared the results

(a) (b)

(c) (d)

Figure 10: Comparison of the distance-safety combined
weight routes for an example origin-destination point, going
from the safest to the fastest route: (a) 25/75, (b) 50/50, (c)
75/25 (d) 100/0 [𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑠𝑎𝑓 𝑒𝑡𝑦]𝑤𝑒𝑖𝑔ℎ𝑡 𝑟𝑎𝑡𝑖𝑜 .

with the initial NKDE that uses all the data. This comparison is
presented in Fig. 11.

What stands out is that the traffic incidents that contribute most
to the largest part of the network’s hotspots (e.g., the 2 bridges
and the arterial roads) are of severity 2 followed by the ones of
severity 3 (Fig. 11(b,c). Severity 4 incidents are less spread and build
compact, though extreme high-risk density regions, while severity
1 can be almost neglected. The weighted NKDE illustrated in Fig.
11(e) seems to reflect a reasonably balanced view on the risk of
traffic incidents and presents itself slightly more compact than the
initial NKDE seen in Fig. 11(f). A method that takes the incident’s
severity into account would rely on a group of severity degrees
rather than focusing on only a single one. That is, if we decided to
ignore all the light severity 1 incidents and start focusing on the
severity 2 group, we would naturally also want to cover the higher
incident groups of severity 3 and 4 as well. Hence, this would lead
us ultimately to a mixed severity NKDE outcome as seen in Fig.
11(e) and Fig. 11(f). For this reason, our safe route evaluation results
in terms of travelled distance, travel time and carbon emissions
were very similar to the ones seen in Fig. 9, showing the same
descending trend. For the case of considering only the severity 3
and/or 4 incidents, the safe route metrics were very close to the
ones of the shortest routes, which can be attributed to the compact
density hotspots and the overall very low density values around
them.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: (a,b,c,d) NKDE based on traffic incident severity
1, 2, 3, and 4 respectively, (e) Severity-Weighted NKDE, (f)
NKDE on all degrees of severity.

3.4 Temporal Network Kernel Density
Estimation (TNKDE) Analysis

Traffic data are highly dynamic and typically come with a temporal
dimension. Traffic accident data are no exception. There are many
different aspects based on which one can observe and analyze the
temporal component, such as seasonality, periodicity and frequency
by month, day, weekend, time of day, to name but a few. We were
particularly interested in identifying daily patterns by the time of
day. Regardless the day, although the day itself can be a signifi-
cant factor itself. Fig. 12 presents the hourly distribution on a San
Francisco traffic accident data sample. There is a clear increasing
trend of traffic accidents reaching its peak around 4pm that most
likely reflects the rush hour traffic volume. A much smaller peak
can be slightly identified at 7am and 9am that could probably also
be attributed to the higher commute traffic. One could easily apply

Figure 12: Temporal histogram of the San Francisco accident
data sample based on hourly slots.

a 1-dimensional KDE on the temporal data and get similar results,
probably a multi-modal distribution or a Gaussian Mixture. But in
our case, it would be more interesting to compute a spatio-temporal
KDE and in particular, a Temporal Network KDE (TNKDE).

Such combined KDE functions for a location point 𝑝 (𝑥,𝑦) at time
𝑡 can be approximated by multiplying the individual kernels and
bandwidths as seen in Eq. 6 and which is found in [27].

𝑇𝑁𝐾𝐷𝐸 (𝑝, 𝑡) = 1
𝑏𝑤𝑁𝑒𝑡 · 𝑏𝑤𝑇𝑖𝑚𝑒

·
𝑛∑︁
𝑖=1

(𝑘𝑁𝑒𝑡 (𝑑 (𝑝, 𝑙𝑖 ), 𝑏𝑤𝑁𝑒𝑡 ) · 𝑘𝑇𝑖𝑚𝑒 (𝑑 (𝑡, 𝑡𝑖 ), 𝑏𝑤𝑇𝑖𝑚𝑒 ))
(6)

where 𝑘𝑁𝑒𝑡 is the network kernel as we had in NKDE, 𝑘𝑇𝑖𝑚𝑒 the
temporal kernel,𝑏𝑤𝑁𝑒𝑡 and𝑏𝑤𝑇𝑖𝑚𝑒 the corresponding bandwidths,
𝑛 the number of points of interest (e.g., traffic accidents), 𝑖 an inci-
dent at location 𝑙𝑖 and time 𝑡𝑖 , and 𝑑 (𝑝, 𝑙𝑖 ) and 𝑑 (𝑡, 𝑡𝑖 ) the distance
in time and space between 𝑝 and 𝑖 . Lucky for us, the R spNetwork li-
brary provides us with this implementation7. As with NKDE before,
we experimented with various kernels and bandwidths. We decided
for the same Quartic kernel, a bandwidth of 300m for the network
kernel and a bandwidth of about 45 minutes for the temporal kernel.
Fig. 13 illustrates a sample of the resulting TNKDE snapshots, each
representing a different time of day, which in this case is a (1/70)𝑡ℎ
snapshot of a 24-hours long day. We can see that each time slot
comes mostly with its own individual small hotspots. A few of them,
like Fig. 13(a), (g) and (i), seem to be more representative of the
NKDE picture we’ve seen in the previous section. In general, while
NKDE is able to identify accident-prone roads and road segments,
TNKDE goes one step further by offering a more condensed and
concrete view into the data and identifies specific parts of roads or
intersections that stand out as particularly risky at certain times of
day. Although, we haven’t dived deeper into the TNKDE, it is ap-
parent that the insights gained from such a TNKDE-based approach
can help further improve and fine-tune the safe route generation
process and therefore, it is part of our future work.

7https://jeremygelb.github.io/spNetwork/articles/TNKDE.html

33

https://jeremygelb.github.io/spNetwork/articles/TNKDE.html


IWCTS ’22, November 1, 2022, Seattle, WA, USA Karatzoglou

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Example TNKDE snapshots where each image
represents a different time of day and comes with its own
micro-hotspots.

4 CONCLUSION AND FUTUREWORK
In this work, we explore aNetwork Kernel Density Estimation (NKDE)
based approach for identifying traffic accident-prone streets on a
road network and its capability of generating safer routes. We eval-
uate the approach using a US traffic accident dataset for the city
of San Francisco in terms of travel distance, travel time and car-
bon emissions against the commonly in navigation systems found
fastest path solution. Moreover, working our way towards the pro-
posed final NKDE-based approach, we also go through the typical
planar KDE as well as the K-Means clustering method and highlight
their limitations for our scenario. Finally, this work investigates
the possibility of taking the severity of the traffic incidents into ac-
count, as well as the role of time into the final results. For the latter,
we make a first dive into the spatio-temporal Temporal Network
Kernel Density Estimation (TNKDE) and discuss our findings. Both
the NKDE and the TNKDE prove to be valuable when it comes to
generating safer routes on a road network based on historical data.

However, the reliance on historical data defines two of the most
important limitations of such data-driven methods. Namely, first,
their necessity for finding the respective data that sufficiently cover
the regions of interest. And second, the need for fresh, up-to-date
data that reflect the most recent road and traffic flow conditions
and which would help prevent potential data drift issues. Moreover,

considering actual real-time signals (such as traffic signals) should
further enhance the predictability of risk regions and thus lead to
more accurate safer routes.

For above reasons, in our future work, we plan to further evaluate
NKDE and TNKDE with additional historical and real-time factors,
such like road quality flags and population density (as both have
been proven to be important in past studies), as well as weather
and traffic information (volume, flow, congestion flags and similar
events) respectively, and how these might be combined with state of
the art routing algorithms such as with customizable route planning
methods and contraction hierarchies.
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