
Optimizing Crowdsourced Delivery Routes Through Concurrent
Selection of Pickup Stores and Drivers

Oscar Correa

University of Melbourne

Melbourne, Australia

oscarcorreag@gmail.com

Egemen Tanin

University of Melbourne

Melbourne, Australia

etanin@unimelb.edu.au

Kotagiri Ramamohanarao

Australian Academy of Science

Melbourne, Australia

rkotagiri@gmail.com

Lars Kulik

University of Melbourne

Melbourne, Australia

lkulik@unimelb.edu.au

Arkady Zaslavsky

Deakin University

Melbourne, Australia

arkady.zaslavsky@deakin.edu.au

Hairuo Xie

University of Melbourne

Melbourne, Australia

xieh@unimelb.edu.au

ABSTRACT
Many retailers are offering crowdsourced delivery where ad hoc

drivers collect goods from pickup stores and deliver the goods to

customers on behalf of the retailers. Efficient spatial data manage-

ment solutions are needed to optimize the routes of the drivers. In

the existingmodel of crowdsourced delivery, retailers make delivery

plans regardless of drivers’ original full routes. This can lead to un-

necessarily high delivery costs. We propose a novel crowdsourced

delivery model that optimizes delivery routes by concurrently se-

lecting pickup stores and drivers. Based on this model, we develop a

heuristic solution for crowdsourced delivery. Experimental results

show that our solution saves delivery costs by up to 50% compared

with the existing model used by retailers. Our solution is also scal-

able for large cities.

CCS CONCEPTS
• Applied computing→ Transportation.

KEYWORDS
spatial data management, route optimization, heuristic algorithms

ACM Reference Format:
Oscar Correa, Egemen Tanin, Kotagiri Ramamohanarao, Lars Kulik, Arkady

Zaslavsky, and Hairuo Xie. 2022. Optimizing Crowdsourced Delivery Routes

Through Concurrent Selection of Pickup Stores and Drivers. In The 15th
ACM SIGSPATIAL International Workshop on Computational Transportation
Science (IWCTS ’22), November 1, 2022, Seattle, WA, USA. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3557991.3567781

1 INTRODUCTION
Many retailers are offering crowdsourced delivery service, where

ad hoc drivers earn a fee for picking up goods and delivering the

goods to customers. For example, Walmart offers a crowdsourced

delivery service called Spark Delivery in the US. The choice of the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IWCTS ’22, November 1, 2022, Seattle, WA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9539-7/22/11. . . $15.00

https://doi.org/10.1145/3557991.3567781

Figure 1: (a) Customer 𝑐 placed a request to a retailer that
owns pickup stores 𝑠1 and 𝑠2. The delivery request is assigned
to an ad hoc driver who is going from work to home and
whose original route is the shortest path between 𝑘+ and
𝑘− . (b) Without considering the driver’s original route, the
retailer may choose 𝑠2 as the pickup store at order placement
time, resulting in a suboptimal delivery route with cost 7 (red
dashed line). (c) By considering the driver’s original route,
the retailer would choose 𝑠1 as the pickup store, resulting in
a better delivery route with cost 5 (blue dotted line).

delivery routes has a direct impact on delivery costs and delivery

speed. Efficient spatial data management solutions are needed for

optimizing the routes in citywide road networks based on a large

amount of spatial data such as the location of stores and customers.

When planning the delivery routes, the existing crowdsourced

delivery services are based on a model where a retailer first chooses

the pickup store for a request and then assigns the delivery job to

the driver who is the closest one to the chosen store at that time. As

the existing model does not consider the original route of drivers

when making delivery plans, the delivery routes can be suboptimal

with high travel costs. The difference between a suboptimal delivery

route and an optimal delivery route can be seen in Figure 1, where

the delivery cost is reduced when the selection of pickup store is

optimized based on the original route of an ad hoc driver. This is a

simple example out of many suboptimal cases.

We propose a crowdsourced delivery model that minimizes deliv-

ery costs through concurrent selection of pickup stores and drivers

when planning the delivery routes. Our model is fundamentally

different from the existing model adopted by retailers in that our

model aims to reduce the detour of ad hoc drivers at the global level

by exploiting the original route of ad hoc drivers, the location of

all pickup stores and the location of customers. We call this model

16

https://doi.org/10.1145/3557991.3567781
https://doi.org/10.1145/3557991.3567781

Optimizing Crowdsourced Delivery Routes Through Concurrent Selection of Pickup Stores and Drivers IWCTS ’22, November 1, 2022, Seattle, WA, USA

Crowdsourced Delivery through Concurrent Routing and pickup

Store Selection (CD-CRSS). We develop an efficient spatial data

management solution to solve instances of CD-CRSS in large cities,

where a large number of delivery requests need to be processed at

the same time. We believe our direction will reduce delivery costs

for retailers and increase crowdsourcing as well.

Our solution involves two stages, an assignment stage and a

routing stage. In the assignment stage, our solution assigns delivery

jobs to drivers such that the estimated travel cost of all the drivers is

minimized. This stage will be presented as a basic nearest neighbor-

based algorithm and then as a more advanced algorithm. The later

algorithm starts with a naive assignment plan then gradually opti-

mizes the plan with a minimal spanning tree using a heuristic. This

stage solves a new type of spatial query: Given a set of drivers and

the predecessors of a customer (the candidate pickup stores), the

query returns the driver whose delivery route, via one of the prede-

cessors, to the customer, has the lowest travel cost. This query is a

variant of the In-Route Nearest Neighbor (IRNN) query [32, 35]. We

name our new query In-Route Nearest Neighbor with Predecessors.
In the routing stage, our solution computes the exact delivery

routes for drivers who are assigned customers. This stage will be

presented as a basic nearest neighbor-based routing algorithm and

then as a more advanced routing algorithm that uses a branch-and-

bound approach. The routing stage solves a new routing problem,

which aims to find the shortest route that passes a given set of

nodes (the customers) via the predecessors (the candidate pickup

stores). This new routing problem is a variant of the shortest Hamil-

tonian path problem [31]. We name the new routing problem Group
Hamiltonian Path with Precedence Constraints.

To further manage delivery costs, we develop two novel detour

control methods. The methods can help limit the distance of de-

tours for reaching pickup stores or customers. The first method

guarantees that a driver only visits stores and customers that are

within a certain distance to his or her original route. The second

method sets a stricter limitation on travel cost such that the ratio

of the distance of the delivery route to the distance of the original

route must be below a threshold no matter the number of stops.

To the best of our knowledge, none of the existing solutions for

crowdsourced delivery can minimize travel costs in such a compre-

hensive way as our solution. Our CD-CRSS model can be applied to

an application scenario where an ad hoc driver picks up goods from

one retailer and delivers the goods to multiple customers of the

same retailer. The model can also be applied to a more generic case

where the driver delivers goods to multiple customers who buy

from different retailers. In this paper, we focus on the generic case.

Our solution is guaranteed to achieve the same or lower delivery

costs than the state-of-the-art solutions because our solution con-

siders more factors when optimizing delivery routes. For example,

our solution considers all the available pickup stores of a retailer

for a customer while the state-of-the-art considers only one.

Our experiments show that a cost saving of 50% can be achieved

when CD-CRSS is applied to a retailer-independent platform like

Amazon, where customers can choose from a wider range of re-

tailers. Our solution is readily deployable as it runs as fast as the

existing model used by Walmart and alike. Our solution can even

serve large cities efficiently. Also, our solution runs up to 3 orders

of magnitude faster than a linear programming-based solution.

2 RELATEDWORK
2.1 Crowdsourced Delivery
Many existing works in crowdsourced delivery [2–4, 6, 7, 9–12, 14,

15, 17, 19, 25, 26, 30, 34, 36] assume that the purchased items
of one customer can only be picked up from one specific
location. This is different to our work as we note the fact that
in many cases there can be multiple pickup locations for one
customer from a retailer. The only work that has studied a similar

configuration is [37]. None of the other existing solutions considers

the optimization of pickup location selection when planning driver

routes. From this point of view, our model (CD-CRSS) is in a highly

advantaged position as it optimizes from multiple perspectives at

the same time. The existing works mainly fall into two categories

depending on whether deliveries are fully crowdsourced or not. In

the first category, deliveries are fully crowdsourced, which means

the ad hoc carriers are responsible for picking up items and deliver-

ing the items to customers directly [4, 6, 7, 9, 10, 12, 19, 26]. In the

second category, deliveries are partially crowdsourced, where ad

hoc carriers only move parcels between intermediate depots in road

networks [15, 30, 34]. The customers need to drop off the parcels

or pick up the parcels at the depots by themselves. Our work falls

into the first category as we assume that ad hoc drivers need to

visit stores and then customers directly.

A recent work [33] on shared mobility applications proposes

a route planning method that can be applied to ride-sharing and

food delivery, which can be adapted to crowdsourced delivery as

well. This work also assumes that there is one pickup location for

one customer, that is, it does not consider the selection of pickup

locations for individual customers. Due to this reason, the approach

cannot be applied to the application scenarios addressed in our

work. We also note that traditional ride-sharing approaches [1,

5, 16, 21, 23, 24] inherently assume that there is only one pickup

location. Therefore, they cannot be used to solve CD-CRSS either.

Another recent work, Online Trichromatic Pickup and Delivery

Scheduling (OTPD) [37], develops a crowdsourced delivery solution

where a set of pickup points are available for each request. OTPD se-

lects pickup locations and drivers based on various constraints, such

as the expiration time of delivery tasks and the workload capacity

of drivers. OTPD is aimed at cases such as food deliveries and its

benefits can be observed when real-time deliveries are paramount.

Thus, it misses the further optimization that can be achieved by

CD-CRSS as our approach exploits the same-day-delivery level of

service adopted by big retailers and therefore finds solutions inside

batches of requests. CD-CRSS is not meant to solve the online ver-

sion of this problem. Also, OTPD maximizes a trichromatic utility

function whereas CD-CRSS minimizes total travel cost. OTPD is

basically aimed to address a stream of queries for perishable goods

and thus, an immediate solution is paramount, while we aim to

address the common online retail market for next-day delivery or

same-day delivery, which gives us room to optimize and address

an Amazon-like market. Based on these premises, our approach

cannot be benchmarked against OTPD.

2.2 Nearest Neighbor Queries
In the general form, Nearest Neighbor (NN) queries search the

closest node to a query point given a set of candidate nodes. Many

17

IWCTS ’22, November 1, 2022, Seattle, WA, USA Correa and Tanin, et al.

variants of Nearest Neighbor queries have been studied [18, 29].

There are two types of NN queries that are highly related to our

work. One of them is In-Route Nearest Neighbor (IRNN) [32, 35] and

another is k-Path Nearest Neighbor (k-PNN) [8]. The two queries

are similar as both search the nodes near a given path with the aim

to minimize the travel cost via the nodes. The difference between

the two queries is that in IRNN the path is fixed whereas in k-PNN

the path can change as the starting point of the path is the user’s

location at real time. Our solution assigns customers to drivers by

solving a variant of IRNN query. Our query differs from IRNN as it

searches the driver whose delivery route is the shortest one among

all the possible delivery routes under the assumption that the route

passes one of the pickup stores and then a given customer.

2.3 Hamiltonian Path Problems
Given a set of vertices, a Hamiltonian path is a path that visits each

vertex once. The shortest Hamiltonian path problem searches the

Hamiltonian path with the lowest cost [31]. The routing algorithm

in our solution solves a new type of routing problem, Group Hamil-
tonian Path with Precedence Constraints. The problem is a variant of

the shortest Hamiltonian path problem. The new problem requires

that certain nodes (customers) can only appear after precedence

nodes (pickup stores) on the shortest Hamiltonian path. Our new

routing problem is also a generalization of the Sequential Ordering

Problem (SOP) introduced by Escudero [13]. Escudero defines the

precedence relationships as a directed acyclic graph 𝑃 B ⟨𝑉 , 𝑅⟩
where an arc (𝑖, 𝑗) ∈ 𝑅 means that vertex 𝑖 should precede 𝑗 , rep-

resented as 𝑖 ≺ 𝑗 , in a feasible path. SOP allows the concurrent

existence of multiple precedence relationships regarding the same

vertex. For example, it allows 𝑖 ≺ 𝑗 ∧ 𝑘 ≺ 𝑗 , where 𝑖 and 𝑘 are two

stores ofWalmart and 𝑗 is a customer. However, SOP cannot enforce

the selection of precedence relationships as our model does. Taking

the previous example, our model can enforce 𝑖 ≺ 𝑗 ∨ 𝑘 ≺ 𝑗 , that is,

a Walmart store must be visited before a customer but visiting any

Walmart store is sufficient. This cannot be achieved with SOP.

3 PROBLEM DEFINITION
Our research is focused on crowdsourced delivery in large cities,

where a large number of online customers may submit delivery

requests to retailers within a time interval. These customers can be

assigned to ad hoc drivers.

Let𝐺 B ⟨𝑉 ,𝐴⟩ be a road network graph with a set of vertices𝑉

and a set of edges 𝐴. Let R be the set of retailers. A retailer 𝑟 ∈ 𝑅
owns a set of stores 𝑆𝑟 . The locations of stores and customers are

in𝑉 for the sake of simplicity without loss of generality. Each edge

𝑒 ∈ 𝐴 is associated with a travel cost, which can be measured as

the distance of the edge or some other metric. Let C be the set of

customers. A request made by customer 𝑐 ∈ 𝐶 contains a retailer

name, a list of purchased items, and a delivery address. Let D be

the set of ad hoc drivers. An ad hoc driver 𝑘 ∈ 𝐷 moves in the

road network. The driver follows a path 𝑃𝑘 , which is a route that

starts at 𝑘+ ∈ 𝑉 and ends in 𝑘− ∈ 𝑉 . The travel cost of the driver
is denoted as 𝑻𝑪𝒌 , which is the sum of the travel costs associated

with all the edges on the driver’s route. Let SC be the service cost of

all drivers. 𝑆𝐶 is measured by travel costs, that is, 𝑆𝐶 =
∑
𝑘∈𝐷 𝑇𝐶𝑘 .

The proportion of customers served by crowdsourced carriers in

all the customers is denoted as PC.
Our research problem is defined as follows.

Given: a road network 𝐺 , a set of retailers 𝑅, a set of customers

𝐶 , and a set of drivers 𝐷 .

Find: a set of routes 𝑃 such that the service cost of ad hoc dri-
vers (SC) is minimizedwhile the proportion of customers served
by the ad hoc drivers in all the customers (PC) is maximized.

4 OUR APPROACH
To plan for crowdsourced delivery, we adopt a two-stage approach.

In the first stage, we assign customers to ad hoc drivers. In the

second stage, we compute the exact routes of drivers. Computing

the optimal plans is computationally difficult because finding the

optimal assignment is equivalent to solving the set cover problem,

which is NP-hard. For planning crowdsourced delivery in citywide

applications, one needs a solution that yields near-optimal plans

with low computational costs. Due to this reason, our solution com-

putes the assignment based on heuristics, and only the routing is

computed exactly. Our experimental results show that our solution

can run several magnitudes faster than a linear programming-based

solution that computes the optimal delivery plan. Meanwhile, our

solution achieves significant cost savings compared to the existing

model adopted by retailers.

4.1 Assignment
Assigning customers to ad hoc drivers is the first stage of our

approach. Ideally, customers can be assigned to drivers while mini-

mizing the service cost (SC as defined in Section 3). Computing the

optimal assignment is equivalent to solving the set cover problem,

which is NP-hard [20, 22]. A set cover problem aims to find the

smallest sub-collection of sets such that the sub-collection contains

all the elements. Specifically, assume there is a ground set 𝑋 of

𝑛 elements and a collection F of 𝑚 subsets of 𝑋 . The goal is to

find the minimum number of subsets 𝑆1, 𝑆2, . . . , 𝑆ℎ in F such that⋃ℎ
𝑖=1 𝑆𝑖 = 𝑋 , where all subsets in the solution are pairwise disjoint.

Note that ℎ can be smaller than𝑚. If each subset in F has a weight,

one can define a Weighted Mutually Exclusive Set Cover Problem,

where the goal is to minimize the sum of the weights in the solu-

tion. CD-CRSS assignment can be formulated with this problem.

Specifically, let𝐶 be the set of customers and 𝐷 be the set of drivers.

The ground set 𝑋 is𝐶 ∪𝐷 . The collection of assignments F include

all the possible assignments, each of which is a subset of 𝑋 .

In the CD-CRSS assignment stage, we aim to find a solution

F ∗ ⊆ F , where each subset 𝑆 in F ∗ is associated with a delivery

cost 𝑇𝐶 (𝑆), the cost to serve all the customers in 𝑆 in one trip. The

total 𝑇𝐶 (𝑆) from all subsets,

∑
𝑆∈F∗ 𝑇𝐶 (𝑆), needs to be minimized.

As finding the exact optimal assignments is NP-hard, our solution

finds approximate assignments with low computational costs.

We develop two heuristic assignment methods. The first method

assigns customers to ad hoc drivers based on the distance between

the customers and the original routes of drivers. This can help

reduce SC but it does not consider the cost of detours that are

needed to reach the pickup stores. To reduce SC further, we develop

the secondmethod that not only considers the location of customers

and the drivers’ original routes but also considers the estimated

18

Optimizing Crowdsourced Delivery Routes Through Concurrent Selection of Pickup Stores and Drivers IWCTS ’22, November 1, 2022, Seattle, WA, USA

Figure 2: Customer 𝑐 placed a request to a retailer whose
stores are 𝑠1 and 𝑠2. Driver 𝑘1’s original route starts from 𝑘+

1

and ends in 𝑘−
1
. Driver 𝑘2’s original route starts from 𝑘+

2
and

ends in 𝑘−
2
. (a) Bold lines depict the ad hoc drivers’ original

routes. Dashed lines show the shortest distances from 𝑐 to
the routes. The nearest neighbor-based method assigns 𝑐 to
𝑘2 since the distance from 𝑐 to this driver’s route is 1, which is
smaller than the distance from 𝑐 to 𝑘1’s route. (b) Dotted lines
depict the ad hoc drivers’ potential delivery routes. With
the In-Route Nearest Neighbor with Predecessors query, 𝑐 is
assigned to 𝑘1 since 𝑘1’s potential route via 𝑠1 (a predecessor
of 𝑐) has cost 6 while 𝑘2’s potential route via 𝑠2 has cost 7.

delivery cost via one of the pickup stores for each customer. We

detail both assignment methods in this section.

4.1.1 Nearest-Neighbor-Based Assignment. In this method, we find

the suitable ad hoc driver for a customer by solving a variant of

the classical Nearest Neighbor query [29]. Given the location of a

queried customer and the original routes of individual drivers, the

query returns the driver whose route is the closest to the customer.

An example of assignment with this method is shown in Figure 2(a).

4.1.2 In-Route-Nearest-Neighbor-Based Assignment. The Nearest-
Neighbor-Based assignment is intuitive, yet it overlooks the stores,

which can result in suboptimal assignments. For example, a cus-

tomer may be assigned to a driver whose original route is close to

the customer whereas all the pickup stores are far from the route.

Driver assignments that consider the estimated cost of delivery via

pickup stores would be more effective in reducing SC. A request

for such an assignment equates to a novel spatial query, In-Route
Nearest Neighbor with Predecessors, which asks for the ad hoc driver

whose delivery route, via one of the predecessors (pickup stores), to

the queried customer, is the shortest one among all possible drivers.

An example of this assignment is shown in Figure 2(b).

This assignment method estimates1 the delivery cost of ad

hoc drivers based on a distance function, 𝑑𝑖𝑠𝑡𝐼𝑅 (Equation 1). In

the function, 𝑞 is a customer, 𝑝𝑘 is the original route of driver 𝑘

with a source 𝑘+ and a destination 𝑘− , 𝑆𝑞 is a set of pickup stores

(predecessors) for customer 𝑞, 𝑠 is one of the candidate pickup

stores, 𝑑𝑖𝑠𝑡 (𝑖, 𝑗) is the shortest network distance between 𝑖 and 𝑗 .

𝑑𝑖𝑠𝑡𝐼𝑅 (𝑞, 𝑝𝑘) B min

𝑠∈𝑆𝑞
{𝑑𝑖𝑠𝑡 (𝑘+, 𝑠) + 𝑑𝑖𝑠𝑡 (𝑠, 𝑞) } + 𝑑𝑖𝑠𝑡 (𝑞, 𝑘−) (1)

1
Only considers one customer at a time. Recall that an ad hoc driver may serve more

than one customer in one go.

Given a customer and all the ad hoc drivers, we can find the

most suitable driver for the customer based on the distance func-

tion (Equation 1). Driver assignment for all the customers can be

found in this way. However, due to randomness in the spatial dis-

tribution of customers and pickup stores, this approach may result

in unbalanced assignments, where some drivers get overloaded

with a large number of orders while others get no orders. Unbal-

anced assignments may also discourage people to participate in

crowdsourced delivery. In addition, overloading some drivers may

significantly increase the time on computing the drivers’ routes,

which affects the scalability of the solution.

To balance the workload between drivers while keeping the esti-

mated delivery cost to the minimum, we develop a load balancing

algorithm based on a Minimal Spanning Tree (MST). A MST is a

tree where all the vertices are connected while the total weight

of its edges is minimized. Our algorithm builds a MST with two

groups of nodes, one is customer nodes and the other is driver

nodes. The MST maintains the assignment information with the

edges between customer nodes and driver nodes. Initially, each

customer is connected to a driver that is found based on Equation 1

via an edge. The weight of the edge is the shortest distance com-

puted with the equation. To make all the nodes connected, there is

also an edge between any pair of drivers. An inter-driver edge has

zero weight so it does not affect the total weight of the MST. By

constructing the tree in this way, the total weight of the tree is the

total travel cost of the drivers who are assigned customers. In the

initial MST, some of the driver nodes may have a high degree, i.e.,

the corresponding drivers may be overloaded. Our load balancing

algorithm aims to minimize the highest degree down to a threshold,

maximum degree𝑚 of MST.
To reduce the degree of the MST, we adopt a greedy technique

that iteratively disconnects a customer node from a high-degree

driver node and reconnects this customer node to a low-degree

driver node, i.e., reassignment of a customer between two drivers.

The reassignment process starts by locating the highest-degree

driver node in the MST. Among the edges that are connected to

this node, we remove the one with the highest weight. This leaves

a customer orphan, i.e., without assignment. Then from the low-

degree driver nodes, we find the driver with the least travel cost to

serve the customer. Finally we connect the orphan customer node

to the newly found driver node in the MST. This is called a “local

move”. The pseudo code of this algorithm is shown below.

1: function MinDeg(𝐺,𝑇 ,𝑚) ⊲𝐺 : graph,𝑇 : MST,𝑚: bound

2: S ← ∅ ⊲ S: drivers on pause

3: 𝑚𝑜𝑣 ← 0 ⊲𝑚𝑜𝑣: local moves between drivers

4: while True do
5: 𝒟← Degrees(𝑇) ⊲ 𝒟: degrees of not paused drivers

6: Δ← max{𝛿 | ⟨𝑘, 𝛿 ⟩ ∈ 𝒟} ⊲ Δ: highest deg. of drivers
7: if Δ =𝑚 then
8: break ⊲ the bound of the degree is reached

9: if Δ = 0 or (Δ = 1 and𝑚𝑜𝑣 = 0) then
10: break ⊲ no local moves were possible

11: if Δ = 1 then
12: S ← ∅ ⊲ paused drivers are freed to try again

13: 𝑚𝑜𝑣 ← 0

14: continue
15: a ← 𝑘 ∈ {𝑘 | ⟨𝑘, 𝛿 ⟩ ∈ 𝒟 ∧ 𝛿 = Δ} ⊲ a : driver node with

the highest degree Δ

19

IWCTS ’22, November 1, 2022, Seattle, WA, USA Correa and Tanin, et al.

Figure 3: (a) Combinations of stores of three different retailers. Walmart stores (𝑊1 and𝑊2) are green. Target stores (𝑇1, 𝑇2 and
𝑇3) are red. Costco stores (𝐶1 and 𝐶2) are blue. (b) Three initial partial paths in a BnB tree for a specific combination of stores.
Each path starts at the driver’s source 𝑘+. A path 𝑘+-𝑊1 is expanded by branching the tree at𝑊1. The IDs of customer 1 to 5
are shown in small circles. Note that a retailer and its customers are in the same color. For example, the IDs of two Walmart
customers (2 and 4) are shown in two green circles. (c) The path 𝑘+-𝑊1 is branched into 4 new partial paths, 𝑘+-𝑊1-𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 4,
𝑘+-𝑊1-𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 2, 𝑘+-𝑊1-𝑇2 and 𝑘+-𝑊1-𝐶2.

16: 𝛾 ←∞ ⊲ 𝛾 : upper bound of edge cost

17: while True do
18: Q ← {⟨𝑞, 𝑐a,𝑞 ⟩ | (a,𝑞) ∈ 𝐸 (𝑇) ∧ 𝑐a,𝑞 < 𝛾 }
19: if Q = ∅ then ⊲ no edges with smaller cost than 𝛾

20: S ← S ∪ {a } ⊲ put a on pause

21: break
22: 𝑐a,𝜙 ← max{𝑐a,𝑞 | ⟨𝑞, 𝑐a,𝑞 ⟩ ∈ Q}
23:

K ←{𝑘 | (𝑘,𝜙) ∈ 𝐸 (𝐺) ∧ (𝑘,𝜙) ∉ 𝐸 (𝑇) ∧
𝑘 ∉ S ∧ ∃⟨𝑘, 𝛿 ⟩ ∈ 𝒟 : 𝛿 ≤ Δ − 2}

24: if K ≠ ∅ then
25: 𝑐a′,𝜙 ← min{𝑐𝑘,𝜙 |𝑘 ∈ K ∧ (𝑘,𝜙) ∈ 𝐸 (𝐺) }
26: 𝐸 (𝑇) ← 𝐸 (𝑇) \ { (a, 𝜙) } ⊲ disconnect 𝜙 from a

27: 𝐸 (𝑇) ← 𝐸 (𝑇) ∪ { (a′, 𝜙) } ⊲ connect 𝜙 to a′

28: 𝑚𝑜𝑣 ←𝑚𝑜𝑣 + 1
29: break
30: else
31: 𝛾 ← 𝑐a,𝜙 ⊲ by updating the upper bound, Q will

become smaller (line 18) such that the

function will try a’s customer associ-

ated with the next largest edge weight

next time (line 22)

32: return𝑇

As shown in the pseudo code, from the edges connected to a

driver a who has the highest-degree Δ among all driver nodes,

we pick the largest-weight edge (a, 𝜙) between the driver and a

customer 𝜙 (line 22). If there exists a set K of drivers who can

serve 𝜙 and have a graph degree of at most Δ − 2, we “move” 𝜙 to

the driver a ′ ∈ K whose 𝑑𝑖𝑠𝑡𝐼𝑅 (Equation 1) to 𝜙 is the shortest

among K . If K is empty, we do not move 𝜙 and we try to move the

customer associated with the next largest-weight edge connected

to a (inner while loop, lines 17-31). Then, we repeat the whole

process with the new highest-degree driver (outer while loop). The
function finishes when the bound is reached, i.e., Δ = 𝑚, or no

local moves were possible. Note that Δ can reach values less than

𝑚 when the driver with the highest degree is put on pause. In this

case, the degrees of the drivers with lower degree are minimized

instead, and Δ skips the value 𝑚. The paused drivers (including

the highest-degree driver) are probed again when Δ = 1. The final

assignment is given by the resulting MST.

Our experiments show that this method leads to significantly

lower service costs (SC) than the basic nearest neighbor-based one.

4.2 Routing
Computing the exact route of ad hoc drivers is the second stage of

our solution. Given a road network 𝐺 B ⟨𝑉 ,𝐴⟩ with a set of ver-

tices𝑉 and a set of edges𝐴, an ad hoc driver 𝑘 , a group of customers

assigned to the driver, and all the available pickup stores of the

retailers that the customers purchased from, we aim to minimize

service cost (SC) by optimizing the delivery route of the driver. We

name this novel routing problem as Group Hamiltonian Path with

Precedence Constraints Problem (GHPPCP). The classical Hamil-

tonian path problem aims to find whether there exists a path that

visits all the given vertices only once. Finding a delivery route for an

ad hoc driver is similar to computing a shortest Hamiltonian path.

But GHPPCP imposes further constraints to the shortest Hamil-

tonian path. First, a pickup store must precede its corresponding
customers in the route. Second, the route only needs to visit one

store per retailer. This is because a driver can pick up the goods for

all the customers of a retailer from a single store. In this section,

we first present a simple nearest-neighbor-based routing algorithm.

Then we present a more advanced routing algorithm that uses a

branch-and-bound approach.

4.2.1 Nearest-Neighbor-Based Routing. Starting from the source

of a driver, this algorithm expands the partial route by appending a

pickup store or a customer, which is the nearest stopping point to

the last stopping point on the partial route. If the nearest stopping

point has been visited or does not need to be visited due to the

constraints of the GHPPCP problem, the algorithm keeps searching

for the next available nearest stopping point. This is done until the

destination is reached.

4.2.2 Branch-and-Bound Routing. This algorithm aims to reduce

SC further using a variant of the classical Branch-and-Bound (BnB)

approach. A classical BnB algorithm finds the solution to an op-

timization problem by branching a tree structure. Each branch is

20

Optimizing Crowdsourced Delivery Routes Through Concurrent Selection of Pickup Stores and Drivers IWCTS ’22, November 1, 2022, Seattle, WA, USA

associated with a lower bound and an upper bound. The algorithm

expands the most promising branch while discarding the branches

that would not produce better solutions than the existing best solu-

tion. In our case, the root of a BnB tree represents a driver’s source.

The path from the root to a leaf node represents a partial path

between the driver’s source and another stopping point, which can

be a pickup store, a customer or the driver’s destination.

As a driver must visit a pickup store of a retailer before visiting

any customer of the retailer, the selection of the pickup store plays

a vital role in computing the delivery route. The algorithm enu-

merates the combinations of pickup stores from different retailers

and builds a BnB tree for each combination. An example is shown

in Figure 3(a), where the customers purchased from three retail-

ers, Walmart, Target and Costco. The numbers of stores owned by

the retailers are 2, 3 and 2, respectively. Therefore, there would be

2×3×2 = 12 combinations of pickup stores. The example highlights

one of the combinations, (𝑊1,𝑇2,𝐶2). A BnB tree is constructed

based on this combination. The three stores are in the first level of

the BnB tree (Figure 3(b)) as one of them must be the first stopping

point after the driver’s source. There are 11 other BnB trees con-

structed in the same way as this tree. A BnB tree may contain a

number of partial paths. The algorithm computes a lower bound

and an upper bound for each partial path in the tree.

A partial path is prioritized to be branched if the associated lower

bound is the minimum among all partial paths of all BnB trees. For

example, in Figure 3(b), we assume that the partial path between 𝑘+

and𝑊1 has the minimum lower bound among all the partial paths

that have been found so far in all the 12 BnB trees. This partial path

is branched, resulting in 4 new partial paths (Figure 3(c)). To speed

up the search, the algorithm prunes branches in BnB trees if the

expansion of the branches would not lead to better results than

expanding the most promising branch found so far. The algorithm

maintains a global minimum upper bound, which may decrease as

more partial paths are expanded. When the global minimum upper

bound becomes lower than the lower bound of a partial path, the

algorithm will dismiss (prune) the partial path in the future.

The lower bound or upper bound of a partial path is a numeric

value that is aggregated from two parts. The first part is the travel

cost of the partial path, i.e., the cost of travelling from the root of the

BnB tree to the last node on the path. The second part is an estimate

of the travel cost associated with the unvisited nodes. The lower

bound and the upper bound differ in the way to compute the second

part. For the lower bound, the second part is the sum of the one-hop

distances between each unvisited node and its nearest neighbor,

even if multiple unvisited nodes share the same nearest neighbor.

The lower bound is likely to be lower than the actual delivery cost

because it only concerns one-hop neighbors rather than a complete

path when estimating the travel cost in the second part. The upper

bound, on the other hand, computes the second part by assuming

that the driver will follow a Hamiltonian path for the rest of the trip.

The Hamiltonian path is computed with the nearest-neighbor-based

routing algorithm described earlier (Section 4.2.1).

4.3 Detour Control
The methods presented in Section 4.1 and Section 4.2 can help

reduce delivery costs. However, it is still possible that some ad

hoc drivers need to make large detours. We present two methods

that guarantee the maximum detour distance by controlling the

size and shape of the area where an ad hoc driver can pick up

and deliver goods. These methods can be used to set the limit of

the service cost SC. The first method limits the maximum detour

for visiting individual stores or customers. This method can be

applied in the assignment stage. The second method enables a more

aggressive control by setting a distance threshold for the whole

delivery route. This method can be applied in the routing stage. Due

to the constraints imposed by these detour control methods, the

proportion of customers served by ad hoc drivers (PC as defined

in Section 3) may decrease when the methods are applied. The

customers who cannot be served by ad hoc drivers need to be

assigned to dedicated drivers. Our experiments show that PC can

still be close to 100%when the first detour control method is applied.

4.3.1 Path-Expansion Method. This method controls the maximum

detour for visiting individual stores or customers. To achieve this,

the method finds an area covering the driver’s original route. The

maximum distance from any point on the boundary of the area to

any node on the driver’s original route is 𝑓 × 𝑑𝑖𝑠𝑡𝑘 , where 𝑓 is a

detour fraction and 𝑑𝑖𝑠𝑡𝑘 is the length of the original route. With

this restriction in place, a driver can only visit pickup stores and

customers within that area. We show an example of this method

in Figure 4, where the fraction parameter is set to 0.5. The figure

shows a search space centred at each node on the original route.

The distance between any point on the boundary of a search space

and the centre of the space is less or equal to 0.5 times the original

route’s distance. The whole serviceable area, where the driver can

pickup and deliver goods, is the union of all the search spaces. We

should note that the search spaces are not perfect circles as the

distances are network distances rather than Euclidean distances.

Figure 4: The search space expands from driver 𝑘’s route by
up to 𝑓 = 0.5 times the route’s distance. The expansion is
made from each node on the original route (𝑘+, 𝑖, 𝑘−). Wal-
mart and Target stores and some customers are within the
expanded area. The delivery route (shown in blue dotted ar-
rows) includes round trips to the stores and the customers in
this example.

This method enforces an upper bound of the delivery cost. Let 𝑓

be the detour fraction, 𝑑𝑖𝑠𝑡𝑘 be the distance of the original route

from 𝑘+ to 𝑘− , |𝑅𝑘 | be the number of retailers in the expanded area

and |𝐶𝑘 | be the number of customers in the expanded area. We have

the following proposition.

Proposition 1. The upper bound of the driver’s delivery costU𝑘

can be calculated as:

U𝑘 =
(
2𝑓 (|𝑅𝑘 | + |𝐶𝑘 |) + 1

)
𝑑𝑖𝑠𝑡𝑘 (2)

21

IWCTS ’22, November 1, 2022, Seattle, WA, USA Correa and Tanin, et al.

Figure 5: (a) An ellipse with constant 𝑡 × 𝑑𝑖𝑠𝑡𝑘 where 𝑡 is the
maximum cost threshold and 𝑑𝑖𝑠𝑡𝑘 is the distance of the dri-
ver’s original route. The driver’s source (𝑘+) and destination
(𝑘−) are the two foci. The Walmart store is added to the par-
tial route at this step. (b) In the next step, a new ellipse is
created with foci Walmart and 𝑘− . The ellipse’s constant is
𝑡 × 𝑑𝑖𝑠𝑡𝑘 − 𝑥 , where 𝑥 is the network distance from 𝑘+ to Wal-
mart. Customer 𝑐2 is added to the partial route. (c) In the last
step, a new ellipse is created with foci 𝑐2 and 𝑘− . The ellipse’s
constant is 𝑡 × 𝑑𝑖𝑠𝑡𝑘 − 𝑥 − 𝑦, where 𝑦 is the network distance
fromWalmart to 𝑐2. The complete route is found at this step.

Proof. In the worst case, any store or customer is only con-

nected with a specific node on the driver’s original route, which

means the driver must diverge from a point on the original route,

visit the store or customer, then return to the diverging point before

going forward along the original route. Therefore, we can conclude

that the cost of visiting a store or customer is at most twice of

𝑓 × 𝑑𝑖𝑠𝑡𝑘 due to the round-trip. Assuming the driver needs to visit

all the retailers and the customers in the area, the maximum detour

distance would be 2𝑓 (|𝑅𝑘 | + |𝐶𝑘 |)𝑑𝑖𝑠𝑡𝑘 . Finally, we must also count

the distance of the driver’s original route as the original route is

included in the delivery route. □

4.3.2 Cost-Threshold Method. The cost upper bound achieved by

the path-expansion method depends on the number of retailers

and the number of customers. Since these numbers may not be

predictable, the upper bound may change in various scenarios. To

achieve a stronger cost guarantee, it would be ideal to have a fixed

upper bound regardless of the random factors. We develop a method

that sets a fixedmaximum cost threshold 𝑡 for the entire delivery
route. This method controls the size and shape of the area where

a delivery route is searched. By applying this method, the upper

bound of the delivery cost for a driver 𝑘 is 𝑡 × 𝑑𝑖𝑠𝑡𝑘 where 𝑑𝑖𝑠𝑡𝑘 is

the distance of the original route of the driver.

The area for searching a delivery route is located based on the

concept of ellipses. An ellipse has two fixed points called foci. For

any point in the interior of an ellipse, the combined distance be-

tween the point and the two foci is not larger than a constant. In our

case, the area where a delivery route is searched can resemble an

ellipse. If a driver only ever needs to visit one store or one customer,

we can find the whole delivery route with only one ellipse, where

the foci are the driver’s source and destination and the constant

associated with the ellipse is 𝑡 × 𝑑𝑖𝑠𝑡𝑘 . However, a driver needs

to make at least two stops (one store and one customer) during a

delivery trip. In some cases a driver needs to make a large number

of stops during the trip. The total travel cost of the trip needs to

be below the upper bound no matter how many stops are made.

For this reason, we need to create a new ellipse whenever a new

waypoint is added to a partial route, i.e., when a nearest neighbor

Table 1: Four variants of our solution based on CD-CRSS
model. IRNN-BnB is the default solution when comparing
CD-CRSS against other models.

Acronym Assignment Method Routing Method
𝑁𝑁–𝑁𝑁 NN NN

𝑁𝑁–𝐵𝑛𝐵 NN BnB

𝐼𝑅𝑁𝑁–𝑁𝑁 IRNN with Predecessors NN

𝐼𝑅𝑁𝑁–𝐵𝑛𝐵 IRNN with Predecessors BnB

is found in the nearest-neighbor-based routing or when a node is

branched in the branch-and-bound routing. In the new ellipse, the

first focal point is the last node on the partial route, the second

focal point remains at the destination of the driver. The new ellipse

also needs to be associated with a lower constant because the par-

tial route becomes longer while the maximum cost threshold 𝑡 is

fixed. Specifically, the new constant is the old constant minus the

distance of the last leg on the partial route. With the new ellipse, we

continue finding the route towards the destination. We repeat this

procedure until the destination is reached. This method provides a

stronger constraint on service cost (𝑆𝐶) than the path-expansion

method but it can lead to a lower proportion of customers served

by ad hoc drivers (𝑃𝐶) due to the smaller space for finding a route.

The procedure of finding delivery routes based on ellipses can

be explained with the example in Figure 5.

5 EXPERIMENTS
We ran experiments to compare the performance of our CD-CRSS

model against the existing model adopted by major retailers. For

the existing model, we assume that the goods purchased by a cus-

tomer are always picked up from the store that is the closest one

to the customer and the driver who delivers the goods is the clos-

est driver to the pickup store. For CD-CRSS, we implement four

variants of our solution (Table 1). The default solution of CD-CRSS

is named 𝐼𝑅𝑁𝑁–𝐵𝑛𝐵 because it uses IRNN with predecessors for

assignment (Section 4.1.2) and the branch-and-bound approach

for routing (Section 4.2.2). In addition, the experiments include a

Mixed-Integer Linear Program (MILP)-based solution that gives the

optimal delivery routes.

The effects of different parameters on the performance of the

models are evaluated through experiments. Number of customers is
the total number of customers that submit delivery requests (the

size of set 𝐶 defined in Section 3). Some or all of the customers can

be served by ad hoc drivers in different scenarios. Ratio of customers
to drivers is the ratio of the number of customers to the total number

of drivers. This parameter controls the number of drivers (the size

of set 𝐷 defined in Section 3). The maximum degree of MST is the

highest degree of the MST tree that is used for balancing workload

between drivers (Section 4.1.2). It is the largest possible number

of customers assigned to any driver when CD-CRSS’ assignment

stage uses the IRNN-based method. Detour fraction controls the

maximum detour distance for visiting an individual customer or

store. It is computed as the ratio of the maximum detour distance to

the distance of the original route of a driver.When testing the effects

of this parameter, CD-CRSS-based solutions use the path-expansion

method for detour control (Section 4.3.1). Maximum cost threshold
is associated with the fixed upper bound of delivery cost. When

22

Optimizing Crowdsourced Delivery Routes Through Concurrent Selection of Pickup Stores and Drivers IWCTS ’22, November 1, 2022, Seattle, WA, USA

Table 2: Parameter settings

Parameter Values Default
Number of customers 8 - 2048 256

Ratio of customers to drivers 1, 2, 4, 8 4

Maximum degree of MST 4, 6, 8, 10, 12 8

Detour fraction 0.05, 0.1, 0.15, 0.2 infinity

Maximum cost threshold 1.05, 1.1, 1.15, 1.2 infinity

testing the effects of this parameter, CD-CRSS-based solutions use

the cost-threshold method for detour control (Section 4.3.2). The

parameter settings are detailed in Table 2.

A batch of 256 customers as default is shown to be enough in

Section 5.1.1. Having a default proportion of 1:4 between ad hoc

drivers and customers is also a reasonable assumption, especially

because of the pandemic, where the number of customers at home

increased drastically. For each set of parameter settings, we run

50 experiments on a random 100𝑘𝑚2
area in Melbourne. The road

network and the store locations of four major retailers inMelbourne

are extracted from OpenStreetMap [28]. Customer locations are

uniformly distributed at random.We simulate ad hoc drivers leaving

their workplaces and going home. The start locations of drivers are

Zipfian distributed, which mimics crowded areas such as the CBD.

The end location of drivers are uniformly distributed at random.

The distribution of the results is shown through box plots.

We evaluate the performance based on service cost (SC), pro-
cessing time, average detour, and proportion of served cus-
tomers (PC). Service cost is the total travel distance of the ad hoc

drivers. Processing time is the length of the period in which all the

requests are processed. Average detour is the average ratio of de-

livery distance to the distance of the original route. Proportion of
served customers is the ratio of customers served by ad hoc drivers

to all the customers. When comparing CD-CRSS against other mod-

els, we also use two other measurements. The first measurement is

service cost ratio, which is the SC of CD-CRSS divided by the SC

of another model. The second measurement is processing time
ratio, which is the processing time of CD-CRSS divided by the

processing time of another model.

5.1 Results
5.1.1 Number of Customers. As shown in Figure 6(a), the service

cost achieved by CD-CRSS is up to 20% less than the existingmodel’s

service cost. The advantage of CD-CRSS becomes more significant

when there are more customers. This is due to the fact that the
benefit of optimizing store selection tends to increase when
more customers can get goods from the same store. The results
also show that CD-CRSS is readily deployable since our solution can

process 256 requests in only 8 seconds (Figure 6(b)) while a recent

study shows that in average 256 delivery requests are submitted

for every 12 minutes in Melbourne [27]. Even with 2048 requests,

CD-CRSS can complete the process in 100 seconds, which means

our solution is suitable for a scenario, where approximately every

household in a city of size 5 million puts an online order every day

for crowdsourced delivery
2
.

2
It is also noteworthy to mention that unlike processing times in computing, travel

gains at the level of 20% are seen as high gains in transport engineering.

Figure 6: (a) Ratio of CD-CRSS’ service cost to the existing
model’s service cost drops to 80% (red dashed line) when there
are 2048 customers. (b) CD-CRSS and the existing model take
comparable processing times.

Figure 7: The retailer-specific version of CD-CRSS achieves
up to 20% service cost reduction from the existing model
(indicated by the blue dashed line). The retailer-independent
version of CD-CRSS achieves up to 50% service cost reduction
from the existing model (indicated by the red dashed line).

The performance of CD-CRSS can be improved even further

if customers can buy the same products from different retailers,

i.e., customers buy from a retailer-independent platform like Ama-

zon. By adopting the Amazon-like model, the pickup stores can

be selected from a wider range, increasing the possibility to re-

duce delivery costs further. We conduct an experiment to compare

CD-CRSS’ performance in the retailer-specific scenario against the

model’s performance in the retailer-independent scenario (Figure 7).

The retailer-independent version of CD-CRSS achieves up to 50%

cost reduction from the existing model used by major retailers,

which is an exceptionally high value of cost savings in travel.

5.1.2 Customer-Driver Ratio. With a larger ratio of customers to

drivers, a driver tends to serve more customers. This can result in

the increase of delivery costs due to the increase of detour distance.

This is evidenced in Figure 8, where we compare the average detour

achieved by four variants of our solution based on CD-CRSS. We

can observe that the average detour nearly doubles when the ratio

increases from 1 to 8. The default solution (IRNN-BnB) achieves

lower detour than other solutions in all the cases. This indicates

that the combination of IRNN-based assignment and BnB-based

routing yields the best results. The result does not show the de-

tour achieved by NN-BnB when the ratio is 8 because the solution

requires prohibitive computation time under the setting.

23

IWCTS ’22, November 1, 2022, Seattle, WA, USA Correa and Tanin, et al.

Figure 8: Average detour increases as the ratio of customers
to ad hoc drivers increases.

Figure 9: (a) Service cost of IRNN-BnB decreases gradually
when workload becomes increasingly unbalanced (the max-
imum degree 𝑚 of MST increases). (b) Processing time of
delivery plans increases exponentially at the same time.

5.1.3 Maximum Degree of MST. In this experiment, we evaluate

the impact of load balancing on the default solution of CD-CRSS,

IRNN-BnB. Specifically, we evaluate the effects of the maximum

degree 𝑚 of MST, which determines the aggressiveness of load

balancing, on service cost and processing time. Figure 9(a) shows

that the service cost decreases gradually with the increase of𝑚. A

higher𝑚 leads to a more unbalanced workload between drivers,

reducing the service cost as the customers can be served in a less

number of delivery trips. However, the processing time of delivery

plans increases exponentially when𝑚 increases (Figure 9(b)). The

significant increase of processing time is due to the fact that the

number of partial paths that need to be checked in BnB routing

grows exponentially. Since we are also after an assignment size

that allows efficient computation without significant impact on the

service cost, we chose𝑚 = 8 as the default maximum degree𝑚 of

MST for IRNN-based assignment in CD-CRSS.

5.1.4 Detour Control Parameters. In the ideal situation, crowd-

sourced delivery can serve a large proportion of customers using ad

hoc drivers while limiting the detours made by the drivers. We pre-

sented two detour control methods in Section 4.3, a path-expansion

method and a cost-threshold method. The first method applies a

detour fraction when expanding the search area of customers and

stores. The second method imposes a fixed cost threshold for the

entire delivery route. This experiment evaluates the effectiveness of

the two methods. The results are shown in Figure 10. Based on the

results, the two solutions that use Nearest Neighbor-based assign-

ment (NN-NN and NN-BnB) are not usable when detour control

is applied due to the fact that less than 10% of the customers are

Figure 10: Performance of detour control methods in terms
of average detour and proportion of served customers. The
left column shows the performance of the path-expansion
method with different settings of detour fraction. The right
column shows the performance of the cost-thresholdmethod
with different settings of the maximum cost threshold.

assigned to ad hoc drivers. We focus on the other two solutions

that use IRNN-based assignment in the rest of the section.

For both detour control methods, the average detour achieved by

IRNN-NN and IRNN-BnB increases when the upper bound of deliv-

ery cost increases. This is shown in the top row of Figure 10. How-

ever, the cost-threshold method (the top-right sub-figure) achieves

lower average detour values than the path-expansionmethod, where

the cost upper bound is more relaxed (the top-left sub-figure).

We also observe a difference between IRNN-NN and IRNN-BnB

in terms of the proportion of customers served by ad hoc drivers.

As shown in the bottom-left sub-figure in Figure 10, nearly all cus-

tomers are served by ad hoc drivers when the detour fraction 𝑓

is between 0.15 and 0.2 with the path-expansion method. On the

contrary, even though the cost-threshold method achieves smaller

detours, less than 40% of the customers are assigned to ad hoc

drivers (the bottom-right sub-figure). This means that dedicated

drivers have to be deployed to serve a large portion of the cus-

tomers, which can be costly to the retailer. This may negate the

benefit of the cost-threshold method. To allow for higher rates of

crowdsourcing, we thus recommend using IRNN-BnB with 𝑓 being

as high as possible (acceptable to the ad hoc drivers).

5.1.5 MILP. We also benchmark the default solution of CD-CRSS,

𝐼𝑅𝑁𝑁–𝐵𝑛𝐵, against the MILP-based solution (Figure 11). For this

experiment, the numbers of customers are smaller than those used

in other experiments as the MILP solver takes a significantly long

time to compute optimal delivery routes with more than 16 cus-

tomers. Also, we do not perform load balancing for the drivers in

𝐼𝑅𝑁𝑁–𝐵𝑛𝐵 due to the low number of customers in this experiment.

24

Optimizing Crowdsourced Delivery Routes Through Concurrent Selection of Pickup Stores and Drivers IWCTS ’22, November 1, 2022, Seattle, WA, USA

Figure 11: (a) The service cost of the default CD-CRSS solu-
tion, 𝐼𝑅𝑁𝑁–𝐵𝑛𝐵, is less than 1.5 times the optimal service
cost computed by the MILP solver. (b) The CD-CRSS solution
runs 2-3 orders of magnitude faster than the MILP solver.

𝐼𝑅𝑁𝑁–𝐵𝑛𝐵 yields a service cost close to the cost yielded by the

MILP solver (Figure 11(a)). However, our solution runs two to three

orders of magnitude faster than the MILP solver (Figure 11(b)).

6 CONCLUSIONS
Our work has shown that it is possible to reduce the cost of crowd-

sourced delivery through concurrent selection of pickup stores and

drivers. Our solution is highly effective in terms of cost saving. It

can reduce delivery costs by up to 50% compared with the existing

model adopted by major retailers. At the same time, our solution

can process once-a-day delivery for every household in a city with

millions of people as it can process over 2000 requests in a batch in

100 seconds. Future research can investigate the possibility of dy-

namic adjustments to delivery routes as our work assumes drivers

would not change routes once the routes have been computed.

REFERENCES
[1] Agatz, Niels and Erera, Alan L and Savelsbergh, Martin WP and Wang, Xing.

2011. Dynamic ride-sharing: A simulation study in metro Atlanta. Procedia-Social
and Behavioral Sciences 17 (2011), 532–550.

[2] Archetti, Claudia and Guerriero, Francesca and Macrina, Giusy. 2021. The online

vehicle routing problemwith occasional drivers. Computers & Operations Research
127 (2021), 105144.

[3] Archetti, Claudia and Savelsbergh, Martin and Speranza, M Grazia. 2016. The

vehicle routing problem with occasional drivers. European Journal of Operational
Research 254, 2 (2016), 472–480.

[4] Arslan, Alp M and Agatz, Niels and Kroon, Leo and Zuidwijk, Rob. 2019. Crowd-

sourced delivery - A dynamic pickup and delivery problem with ad hoc drivers.

Transportation Science 53, 1 (2019), 222–235.
[5] Cao, Bin and Alarabi, Louai and Mokbel, Mohamed F and Basalamah, Anas. 2015.

Sharek: A scalable dynamic ride sharing system. In MDM, Vol. 1. IEEE, 4–13.

[6] Chen, Ping and Chankov, Stanislav Milkov. 2017. Crowdsourced delivery for

last-mile distribution: An agent-based modelling and simulation approach. In

2017 IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM). IEEE, 1271–1275.

[7] Chen, Wenyi and Mes, Martijn and Schutten, Marco. 2018. Multi-hop driver-

parcel matching problem with time windows. Flexible Services and Manufacturing
Journal 30, 3 (2018), 517–553.

[8] Chen, Zaiben and Shen, Heng Tao and Zhou, Xiaofang and Yu, Jeffrey Xu. 2009.

Monitoring path nearest neighbor in road networks. In SIGMOD. 591–602.
[9] Peng Cheng, Xiang Lian, Lei Chen, and Cyrus Shahabi. 2017. Prediction-based

task assignment in spatial crowdsourcing. In 2017 IEEE 33rd International Confer-
ence on Data Engineering (ICDE). IEEE, 997–1008.

[10] Camila F Costa and Mario A Nascimento. 2018. In-route task selection in crowd-

sourcing. In Proceedings of the 26th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. 524–527.

[11] Iman Dayarian and Martin Savelsbergh. 2020. Crowdshipping and same-day

delivery: Employing in-store customers to deliver online orders. Production and
Operations Management 29, 9 (2020), 2153–2174.

[12] Dingxiong Deng, Cyrus Shahabi, and Linhong Zhu. 2015. Task matching and

scheduling for multiple workers in spatial crowdsourcing. In Proceedings of the
23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems. 1–10.

[13] Escudero, Laureano F. 1988. An inexact algorithm for the sequential ordering

problem. European Journal of Operational Research 37, 2 (1988), 236–249.

[14] Katarzyna Gdowska, Ana Viana, and João Pedro Pedroso. 2018. Stochastic last-

mile delivery with crowdshipping. Transportation research procedia 30 (2018),

90–100.

[15] Hong, Jinseok and Lee, Minyoung and Cheong, Taesu and Lee, Hong Chul. 2019.

Routing for an on-demand logistics service. Transportation Research Part C:
Emerging Technologies 103 (2019), 328–351.

[16] Huang, Yan and Bastani, Favyen and Jin, Ruoming and Wang, Xiaoyang Sean.

2014. Large scale real-time ridesharing with service guarantee on road networks.

VLDB 7, 14 (2014), 2017–2028.

[17] Fariha Tabassum Islam, Tanzima Hashem, and Rifat Shahriyar. 2021. A Privacy-

Enhanced and Personalized Safe Route Planner with Crowdsourced Data and

Computation. In ICDE. IEEE, 229–240.
[18] Jensen, Christian S and Kolářvr, Jan and Pedersen, Torben Bach and Timko, Igor.

2003. Nearest neighbor queries in road networks. In Proceedings of the 11th ACM
International Symposium on Advances in Geographic Information Systems (GIS).
1–8.

[19] Kafle, Nabin and Zou, Bo and Lin, Jane. 2017. Design and modeling of a

crowdsource-enabled system for urban parcel relay and delivery. Transportation
Research Part B: Methodological 99 (2017), 62–82.

[20] Karp, RichardM. 1972. Reducibility among combinatorial problems. InComplexity
of Computer Computations. Springer, 85–103.

[21] Yafei Li, Ji Wan, Rui Chen, Jianliang Xu, Xiaoyi Fu, Hongyan Gu, Pei Lv, and

Mingliang Xu. 2021. Top-𝑘k Vehicle Matching in Social Ridesharing: A Price-

Aware Approach. TKDE 33, 3 (2021), 1251–1263.

[22] Lu, Songjian and Lu, Xinghua. 2013. An exact algorithm with the time complexity

of 𝑂∗ (1.299𝑚) for the weighed mutually exclusive set cover problem. arXiv
preprint arXiv:1302.5820 (2013).

[23] Luo, Hui and Bao, Zhifeng and Choudhury, Farhana and Culpepper, Shane. 2019.

Dynamic Ridesharing in Peak Travel Periods. TKDE (2019), 1–1.

[24] Ma, Shuo and Zheng, Yu and Wolfson, Ouri. 2013. T-share: A large-scale dynamic

taxi ridesharing service. In ICDE. 410–421.
[25] Macrina, Giusy and Pugliese, Luigi Di Puglia and Guerriero, Francesca and

Laganà, Demetrio. 2017. The vehicle routing problem with occasional drivers and

time windows. In International Conference on Optimization and Decision Science.
Springer, 577–587.

[26] Macrina, Giusy and Pugliese, Luigi Di Puglia and Guerriero, Francesca and

Laporte, Gilbert. 2020. Crowd-shipping with time windows and transshipment

nodes. Computers & Operations Research 113 (2020), 104806.

[27] Morgan, Roy. 2019. Over 5 million Australians consider buying groceries

online. http://www.roymorgan.com/findings/7911-australian-online-grocery-

shopping-march-2019-201903220623. [Online; accessed 09-May-2021].

[28] OpenStreetMap Contributors. 2017. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org. [Online; accessed

19-January-2018].

[29] Papadias, Dimitris and Zhang, Jun and Mamoulis, Nikos and Tao, Yufei. 2003.

Query processing in spatial network databases. In VLDB. Elsevier, 802–813.
[30] Raviv, Tal and Tenzer, Eyal Z. 2018. Crowd-shipping of small parcels in a physical

internet. https://www.researchgate.net/publication/326319843_Crowd-shipping_

of_small_parcels_in_a_physical_internet. [Online; accessed 09-May-2021].

[31] Marc Sevaux and Kenneth Sörensen. 2008. Hamiltonian paths in large clustered

routing problems. InWorkshop on Metaheuristics for Logistics and Vehicle Routing,
EU/ME’08. Troyes, France, 411–417.

[32] Shekhar, Shashi and Yoo, Jin Soung. 2003. Processing in-route nearest neighbor

queries: a comparison of alternative approaches. In Proceedings of the 11th ACM
International Symposium on Advances in Geographic Information Systems (GIS).
9–16.

[33] Tong, Yongxin and Zeng, Yuxiang and Zhou, Zimu and Chen, Lei and Ye, Jieping

and Xu, Ke. 2018. A unified approach to route planning for shared mobility.

VLDB 11, 11 (2018), 1633–1646.

[34] Yıldız, Barış. 2021. Express package routing problem with occasional couriers.

Transportation Research Part C: Emerging Technologies 123 (2021), 102994.
[35] Yoo, Jin Soung and Shekhar, Shashi. 2005. In-route nearest neighbor queries.

GeoInformatica 9, 2 (2005), 117–137.
[36] Yan Zhao, Kai Zheng, Jiannan Guo, Bin Yang, Torben Bach Pedersen, and Chris-

tian S Jensen. 2021. Fairness-aware Task Assignment in Spatial Crowdsourcing:

Game-Theoretic Approaches. In ICDE. IEEE, 265–276.
[37] Zheng, Bolong and Huang, Chenze and Jensen, Christian S and Chen, Lu and

Hung, Nguyen Quoc Viet and Liu, Guanfeng and Li, Guohui and Zheng, Kai. 2020.

Online Trichromatic Pickup and Delivery Scheduling in Spatial Crowdsourcing.

In ICDE. 973–984.

25

http://www.roymorgan.com/findings/7911-australian-online-grocery-shopping-march-2019-201903220623
http://www.roymorgan.com/findings/7911-australian-online-grocery-shopping-march-2019-201903220623
 https://www.openstreetmap.org
https://www.researchgate.net/publication/326319843_Crowd-shipping_of_small_parcels_in_a_physical_internet
https://www.researchgate.net/publication/326319843_Crowd-shipping_of_small_parcels_in_a_physical_internet

	Abstract
	1 Introduction
	2 Related Work
	2.1 Crowdsourced Delivery
	2.2 Nearest Neighbor Queries
	2.3 Hamiltonian Path Problems

	3 Problem Definition
	4 Our Approach
	4.1 Assignment
	4.2 Routing
	4.3 Detour Control

	5 Experiments
	5.1 Results

	6 Conclusions
	References

