
Learn2Pool: Efficient and Effective Ride Assignment in
Ride Sharing Systems

Ryan Cheng
University of Colorado Denver

Denver, Colorado, USA
ryan.cheng@ucdenver.edu

Selvakumar Jayaraman
University of Colorado Denver

Denver, Colorado, USA
selvakumar.jayaraman@ucdenver.edu

Robert Fitzgerald
University of Colorado Denver

Denver, Colorado, USA
robert.fitzgerald@ucdenver.edu

Farnoush Banaei-Kashani
University of Colorado Denver

Denver, Colorado, USA
farnoush.banaei-kashani@ucdenver.edu

ABSTRACT
Ride sharing systems enable people with similar itineraries and
pick-up times to share their rides on the same vehicle. This has
significant societal benefits as it reduces the number of vehicles
used and hence reduces energy consumption and emissions to the
environment. However, current systems do not fully address the
potential of ride sharing as they do not utilize the transportation
network effectively. A change in the ride assignment/scheduling
algorithm to batch multiple requests has proven to be effective
when extended time utilization is considered. Current batching
based assignment methods generate all possible combinations of
the trips for a given set of requests and vehicles, and then solve
the assignment problem using integer linear programming (ILP).
This becomes more computationally expensive as the combinato-
rial search space grows. In this paper, we propose overcoming this
scalability problem by learning the reverse nearest neighbors order
for a given location using pointer networks to effectively reduce
the number of candidate trips considered in ILP. With extensive
experimentation using real data, we show that our proposed so-
lution, termed Learn2Pool, offers the most practical solution for
ride assignment by allowing striking a balance between efficacy
and efficiency, while demonstrating superior efficiency and efficacy
across all existing methods.

CCS CONCEPTS
• Information systems→ Location based services.

KEYWORDS
Ride sharing; Ride Assignment; Learning Priority

ACM Reference Format:
RyanCheng, Selvakumar Jayaraman, Robert Fitzgerald, and Farnoush Banaei-
Kashani. 2022. Learn2Pool: Efficient and Effective Ride Assignment in Ride
Sharing Systems. In The 15th ACM SIGSPATIAL International Workshop on

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IWCTS ’22, November 1, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9539-7/22/11.
https://doi.org/10.1145/3557991.3567780

Computational Transportation Science (IWCTS ’22), November 1, 2022, Seat-
tle, WA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3557991.3567780

1 INTRODUCTION
Ride-sharing systems enable people with similar itineraries and
pick-up times to share their rides on the same vehicle. This has sig-
nificant societal benefits as it reduces the number of vehicles used
and hence reduces energy consumption and emissions to the envi-
ronment. On platforms like Uber, Lyft, etc., where on-demand ride
pooling service is provided, pooled rides maximize profit for the dri-
vers while minimizing cost for the customers. However, optimally
assigning vehicles to the requests in a ride sharing environment is
a NP hard problem; there is no exact algorithm to solve the problem
in polynomial time. Current systems either perform extensive com-
putation using methods such as integer linear programming (ILP)
to assign the vehicles to batched requests, or use other heuristics-
based approaches that improve on time complexity but lose on
performance measures such as total distance traveled, total waiting
time, etc. This has motivated the development of learning-based
systems that utilize neural networks to improve on computation
time while maintaining system performance.

In particular, in [8, 11, 12, 14, 15] authors have proposed various
insertion based approaches to solve the ride sharing assignment
problem. With insertion based approaches, requests are handled
one at a time sequentially as they arrive, and the vehicle assignment
is filtered based on detour cost and assigned to a request. While
insertion based methods reduce computation time for ride sharing
assignment/scheduling, they are not effective since requests are
assigned one at a time without considering other requests. On the
other hand, batching based approaches [1–7, 9, 14] overcome this
issue by waiting a certain amount of time and grouping requests
and vehicles into batches, and then assigning vehicles to requests
as a batch. This is formulated as an integer linear programming
(ILP) problem with travel delay as the cost, and to be minimized
with constraints such as maximum allowed waiting time. This
approach improves performance but is computationally expensive
as it generates a large number of trip combinations to be solved.

In this paper, we introduce Learn2Pool which deploys a pointer
network [13] to prune the candidate trips before using ILP to find
the optimized assignment. With effective pruning of the search
space, our proposed solution enables efficient assignment while also

9

https://doi.org/10.1145/3557991.3567780
https://doi.org/10.1145/3557991.3567780
https://doi.org/10.1145/3557991.3567780

IWCTS ’22, November 1, 2022, Seattle, WA, USA Ryan Cheng, Selvakumar Jayaraman, Robert Fitzgerald, and Farnoush Banaei-Kashani

Table 1: Categorization of the related work based on various features

Paper Batching Insertion Main Optimization Criteria Optimization Strategy Prediction Based Indexing RebalancingWaiting Time Distance Computation Time Service Rate Shared Trips Profit ILP DP MDP DRL Other
[2] ✓ ✓ ✓ ✓ ✓
[8] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[11] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[1] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[7] ✓ ✓ ✓ ✓ ✓ ✓
[12] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[9] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[4] ✓ ✓ ✓ ✓ ✓
[15] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[14] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[6] ✓ ✓ ✓ ✓ ✓
[3] ✓ ✓ ✓ ✓ ✓

Our Paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

maintaining performance iterms of metrics such as total passenger
waiting time, total vehicle travel time, etc.

In the rest of this paper, first we examine related work in Section
2. We then formally define the problem in Section 3 before we ex-
plain our methods in Section 4. Finally, we present our experimental
evaluation of the proposed solution in Section 5, and conclude and
discuss future directions in Section 6.

2 RELATEDWORK
Several approaches exist in current literature to solve the ride shar-
ing scheduling/assignment problem. These can be broadly cate-
gorized by insertion-based approaches that handle requests indi-
vidually, and batching-based approaches that group requests and
vehicles together to minimize the defined cost function. Related
solutions can be further examined by their optimization strategy
and problem formulation, most of which employ a form of integer
linear programming (ILP), dynamic programming (DP), Markov
decision process (MDP), deep reinforcement learning (DRL), or a
combination of these to find the optimal assignment.

Table 1, summarizes the existing work in terms of the aforemen-
tioned capabilities and approaches. Below we further elaborate on
the categorization offered in this table as well as related work in
each category.

2.1 Insertion versus Batching
Insertion based approaches handle requests one at a time in a First
Come First Serve manner. Vehicles are filtered based on detour cost
and assigned to a ride request [8, 11, 12, 14, 15]. These approaches
reduce waiting time for the passengers as well as computation time
for assignment; however, they lose performance at the system-level
with metrics such as total travel time for the vehicles.

Batching-based approaches overcome this issue by grouping
requests and vehicles to improve on system-level performances
requirements. Many of these approaches formulate the ride assign-
ment problem as an integer linear programming (ILP) problem using
the cost as the travel delay, and minimizing the cost by considering
constraints such as maximum allowed waiting time [1–7, 9, 14].
While these approaches achieve better system-level performance,
they are computationally expensive as large numbers of trip com-
binations are generated and assessed to identified the optimized
assignment solutions.

2.2 Optimization Criteria
Different ride assignment solutions consider a variety of optimiza-
tion criteria such as the total waiting time (as well as total travel
time) for the passengers, total distance traveled by the vehicles,
computation time to solve the assignment problem, service rate
(i.e., ratio of the requests assigned within time-constrains for ride
assignment), total number of shared trips (versus trips that are not
shared), and the total profit for ride service. For the majority of
solutions, waiting time is a primary optimization metric since the
objective of an effective ride sharing system is to minimize the cost
of assignment, which is the total delay caused for accommodat-
ing the shared trips. Distance traveled is another common metric,
comparing the total or average distance increase of vehicles caused
by shared trips. Computation time measures the efficiency of the
optimization algorithm, which is paramount due to the application
of ride sharing solutions in real-world settings. Service rate, which
is the number of requests served, and the number of shared trips are
also significant metrics for system optimality. Lastly, some methods
define a pricing scheme to maximize driver profit while minimizing
passenger expense.

2.3 Optimization Strategy
Another categorization of these solutions is based on the way a
solutions formulates the ride assignment optimization problem
and the strategy to address the problem. Many approaches incor-
porate the integer linear program (ILP) formulation of the ride
assignment problem to provide optimal assignment for the multi-
vehicle routing problem [1, 2, 7, 9, 11, 15]. Other solutions employ
dynamic-programming (DP) based insertion to find optimal routes
without enumerating all possible pairs for insertion [12, 14, 15].
Alternatively, other approaches model the problem as a Markov de-
cision process (MDP) to find optimal solutions through a sequence
of decisions [6, 9]. Lastly, some approaches opt to use a greedy
lazy shortest path algorithm [8] or kinetic trees [5] to minimize
computation time.

Heuristics-based methods have been shown to either lose perfor-
mance on system-level metrics (such as total travel time) or require
large computational resources to find the optimal assignment. Deep
reinforcement learning (DRL) methods have been introduced to
address these issues by leveraging neural networks to learn the opti-
mal assignment policy [3, 4, 6, 9]. Results from these methods have
been shown to maintain comparable system-level performance to

10

Learn2Pool: Efficient and Effective Ride Assignment in
Ride Sharing Systems IWCTS ’22, November 1, 2022, Seattle, WA, USA

the exact optimization solutions while requiring less computation
time.

2.4 Other Categories
Some solutions also take into account demand and supply based
on the predicted distribution of upcoming vehicles and requests
when calculating the optimal assignment [6, 9, 14]. Others make
use of spatial or spatio-temporal indexing [3, 5, 8, 9] to quickly
retrieve candidate vehicles for requests. Lastly, some approaches
also take into account assignment rebalancing based on popular
origin/destination stations (hot-spots) [1, 4, 5, 7, 11].

In this paper, we propose a batching based solution using the ILP
formulation to find the optimal assignment. We employ a pointer
network model to learn the reverse nearest neighbors order of
requests in order to prune the combinatorially large search space
and decrease computation time. Our solution also makes use of
spatial indexing to quickly retrieve candidate vehicles for requests.
As we explain in Section 5, system optimality is measured by the
waiting time, distance, computation time, service rate, and number
of shared trips as well as computation time in comparison to other
methods.

3 PROBLEM DEFINITION
The ride sharing problem is a formulation of the NP-Hard Vehi-
cle Routing Problem (VRP). This is a combinatorial optimization
problem that has two main components: 1) assign passengers/ride-
requests to vehicles, and 2) routing the vehicles from the origin to
the destination location. The objective is to generate a sequence
of route assignments for each vehicle such that one can maximize
the number of passengers served and minimize the total cost of the
system, typically measured by waiting time or distance traveled,
respectively.

Formally, we consider a set of ride requests 𝑅 = {𝑟1, ...𝑟𝑛}, a
set of vehicles 𝑉 = {𝑣1, ...𝑣𝑛}, and a function to compute travel
time on the road network. We compute the optimal assignment

∑
of requests to vehicles that minimizes the cost function 𝐶 while
satisfying a number of constraints such as maximum waiting time,
maximum incurred delay, etc. The cost 𝐶 of an assignment

∑
is

the sum of delays 𝛿𝑟 (i.e., the time it takes between receipt of a ride
request 𝑟 from a passenger to the pickup time of the passenger)
over all assigned requests, plus a large constant 𝑐𝑘𝑜 as penalty for
each unassigned request (i.e., the requests that cannot be assigned
within the identified constraints for the assignment problem). The
cost function we aim to minimize can be formalized as follows:

𝐶 (∑) = ∑
𝑣∈𝑉

∑
𝑟 ∈𝑃𝑣 𝛿𝑟 +

∑
𝑟 ∈𝑅𝑘𝑜 𝑐𝑘𝑜

where 𝑃𝑣 is the set of ride requests assigned to vehicle 𝑣 in assign-
ment plan

∑
, and 𝑅𝑘𝑜 represents the set of unassigned requests.

4 LEARN2POOL
Figure 1 shows the two-step process of ride assignmentwith Learn2Pool,
our proposed efficient and effective solution for ride assignment
in ride sharing systems. Below, we present the two components of
Learn2Pool as depicted in the figure; note that the second compo-
nent (i.e., ILP) is explained first to motivate the need for the first
component.

Figure 1: Learning Reverse Nearest Neighbors for Ride Shar-
ing Assignment

4.1 Integer Linear Programming (ILP)
We use the Integer Linear Programming (ILP) formulation to find
anytime optimal assignment for the multi-vehicle routing problem.
This is done starting with the greedy solution and then optimized
incrementally to solve the ILP. For greedy assignment, trips are
assigned to vehicles iteratively in decreasing size of trip and in-
creasing cost to maximimize the amount of requests served while
minimizing cost. The optimization is then solved incrementally by
applying the given cost function and constraints until a request is
either assigned to a vehicle or ignored. Optimal assignment can be
computed through an exhaustive search; however, this becomes
computationally expensive with more vehicles and requests. In the
next section, we explain how we use learning to reduce the time
complexity of optimization with ILP.

4.2 Learning Priority Order of Ride Requests
To overcome the aforementioned scale-up issue with ILP, we learn
the optimized order among a set of reverse nearest neighbor (RNN)
ride requests for each vehicle. The optimized order is then consid-
ered as the priority list to reduce the combinatorially large search
space of ILP problem explained in Section 4.1. Learn2Pool learns
the optimized order of reverse nearest pick-up/request locations for
a given vehicle location in a supervised manner by using simulation
data for training the model (see Algorithm 1).

More specifically, to learn the order of reverse nearest neigh-
bors/requests, we use the pointer network model [13], which is
designed to learn the optimal output sequence where order and
size of the output are dependent on the order and size of the in-
put. In our case, input data is featurized as a list of a vehicle loca-
tions, each followed by the pickup locations of requests, denoted
by [𝑣𝑖 , 𝑟1, 𝑟2, . . . 𝑟𝑛]. The true output is computed by calculating
the distances of all requests from the vehicle and finding the or-
der of nearest requests from the vehicle’s location. The model is
trained from 5000 simulated input/output samples using a naive
nearest neighbors computation with the goal of minimizing categor-
ical cross-entropy loss between the true sequences and predicted
sequences. Below we further elaborate on the training data prepa-
ration as well as the model used for learning the priority order of
requests.

11

IWCTS ’22, November 1, 2022, Seattle, WA, USA Ryan Cheng, Selvakumar Jayaraman, Robert Fitzgerald, and Farnoush Banaei-Kashani

Figure 2: Pointer Network Model

4.2.1 Data Preparation. Real trips from the New York City Taxicab
public dataset [10] was used for simulations. Raw latitude-longitude
locations are normalized to be within a range of [0, 1]. As mentioned
previously, the input is featurized as a list of a vehicle location fol-
lowed by pickup locations of requests denoted by [𝑣𝑖 , 𝑟1, 𝑟2, . . . 𝑟𝑛],
where 𝑛 is the size of the reverse nearest neighbor set considered.
Since the first element of the input is always the vehicle’s loca-
tion, the first index of the pointer network output is expected to be
always 0.

4.2.2 Model Training. The pointer network model (see Figure 2)
consists of an encoder-decoder architecture made up of RNN-based
layers of LSTM. The hidden size of the pointer network is set to
128, and the model is trained for different epoch lengths ranging
from 500 to 2000 with a learning rate of 0.1.

5 EXPERIMENTAL EVALUATION
Wehave performed extensive experimentation to compare Learn2Pool
versus existing work in terms of both efficiency and efficacy. In this
section, we first discuss our experimental methodology, and then
review our experimental results.

5.1 Experimental Methodology
For training and testing, the New York City Taxicab public dataset
[10] was used to simulate requests and vehicle location using data
points from real trips in Manhattan. Vehicle capacity is set to 4
throughout the simulation. A machine with 2.7 Ghz dual core Intel
i5 processor and 16 GB of RAM was used for training and testing.

The following methods were considered as related work for
comparative study agaist Learn2Pool (referenced as Pointer+ILP in
the figures for clarity):Greedy, Prune Greedy DP, Batch ILP,Grid+ILP,
Deep Q Network (DQN), and Q-Mix. The greedy approach was used
as a baseline, and works by greedily assigning the nearest vehicle
to a request in an insertion-based manner as requests arrive. Prune

Greedy DP is a dynamic programming-based insertion approach
introduced by Wang et. al [14]. Batch ILP is a batching-based ILP
approach that does not prune the search space [2][1][7]. Grid+ILP,
introduced by Ma et. al [8], is a method that divides the spatial
map into an equal number of grids and uses a framework to prune
vehicles for a given request. Lastly, two reinforcement learning
approaches were tested; the first uses Deep Q-Networks [4] and
the second using the Q-Mix model introduced by Rashid et. al [13].

Methods were evaluated on the basis of total and average dis-
tance traveled by vehicles, total and average waiting time of passen-
gers, total computation time for assignment plan generation, actual
total waiting time of passengers (which includes the assignment
computation time along with wait time for pickup for each passen-
ger), service rate, and total number of shared trips. We tested three
parameter configurations with varying numbers of requests and
vehicles per batch, for 10 batches. Firstly, we tested a configuration
with 50 requests and 10 vehicles per batch. Second, we tested 50
requests and 20 vehicles per batch. Third, we tested 30 requests
and 10 vehicles per batch. This was done to evaluate the effect of
different parameters on the system efficacy as well as computation
time. Lastly, a sensitivity analysis was conducted to assess the trade
off between efficacy and efficiency by varying numbers of nearest
neighbors 𝑛 considered in the pruning process with Learn2Pool.

5.2 Experimental Results
Tables 2, 3, and 4 show results of our comparative study for the
3 configurations across all methods and metrics as described in
Section 5.1; respectively, Figures 3, 4, and 5 visualize most important
metrics reported in the tabular data for ease of interpretation.

Across all configurations we observe the following recurring
patterns. As expected, the Greedy method which spends minimal
time for assignment computation (as it does not consider batch
assignment) performs worst in terms of waiting time, making it
an unacceptable option despite the low assignment time as well as
high service rate and number of shared trips. The Prune Greedy DP
method uses dynamic programming to achieve improved waiting
time at the cost of huge increase in the distance traveled (performing
significantly worse than all other methods); hence, equally unac-
ceptable. The ILP based solutions (including our solution) achieve
a balanced performance in terms of distance traveled and waiting
time, with Pointer+ILP (i.e., Learn2Pool) offering the best waiting
time with lower computation time due to the proposed learning
mechanism for pruning the search space. Finally, considering the
two methods that leverage reinforcement learning for optimization,
while DQN achieves the lowest distance traveled, waiting time
and computation time among all methods, this is achieved at the
cost of poor service rate and number of shared trips, with worst
performance across all methods; hence, impractical to use. Among
all related work considered in this study, Q-Mix, alike Pointer+ILP
(i.e., Learn2Pool) strikes a desirable balance between efficacy and
efficiency metrics, offering good performance across all metrics;
however, this method is outperformed by Pointer+ILP in terms of
all efficiency and efficacy metrics, particularly when larger request
and vehicle batch sizes are considered with Pointer+ILP. We con-
clude that our proposed solution, Learn2Pool, can strike the right

12

Learn2Pool: Efficient and Effective Ride Assignment in
Ride Sharing Systems IWCTS ’22, November 1, 2022, Seattle, WA, USA

Table 2: Configuration 1 - 50 requests and 10 vehicles per batch, for 10 batches

Metric Greedy Prune Greedy DP Batch ILP Grid + ILP Pointer + ILP DQN Q-Mix
Total distance (miles) 172 300 101 115 113 49 124

Total waiting time (mins) 168 14 17 21 20 13 37
Total computation time (mins) 0.05 0.16 11 11 6 0.16 0.13
Actual total waiting time (mins) 168 14 28 32 26 13 37

Average distance (miles) 2.02 4.4 1.18 1.32 1.25 1.22 1.25
Average waiting time (mins) 1.97 0.2 0.32 0.37 0.28 0.32 0.37

Service rate (%) 51 54.4 42 45 45.75 22 45.4
Number of shared trips 85 68 78 79 78 29 77

Figure 3: Visualization of selected metrics for Configuration 1

Table 3: Configuration 2 - 50 requests and 20 vehicles per batch, for 10 batches

Metric Greedy Prune Greedy DP Batch ILP Grid + ILP Pointer + ILP DQN Q-Mix
Total distance (miles) 251 394 118 121 124 52 142

Total waiting time (mins) 241 26 15 14 17 11 51
Total computation time (mins) 0.05 0.16 26 22 18 0.16 0.13
Actual total waiting time (mins) 241 26 41 36 35 11 51

Average distance (miles) 1.62 2.02 0.92 0.91 0.94 1.08 1.22
Average waiting time (mins) 1.56 0.13 0.32 0.27 0.26 0.22 0.43

Service rate 71.20% 94.40% 58.50% 57.25% 59.75% 34% 71.50%
Number of shared trips 124 86 91 88 98 41 86

Figure 4: Visualization of selected metrics for Configuration 2

13

IWCTS ’22, November 1, 2022, Seattle, WA, USA Ryan Cheng, Selvakumar Jayaraman, Robert Fitzgerald, and Farnoush Banaei-Kashani

Table 4: Configuration 3 - 30 requests and 10 vehicles per batch, for 10 batches

Metric Greedy Prune Greedy DP Batch ILP Grid + ILP Pointer + ILP DQN Q-Mix
Total distance (miles) 136 202 46 36 38 40 66

Total waiting time (mins) 145 14 8 7 7 12 23
Total computation time (mins) 0.05 0.16 1.58 1.45 1.11 0.13 0.13
Actual total waiting time (mins) 145 14 9 8 8 12 23

Average distance (miles) 2.34 0.93 0.8 0.8 0.8 1.37 1.2
Average waiting time (mins) 2.5 0.06 0.15 0.17 0.17 0.41 0.41

Service rate 58.00% 71.60% 43.50% 37.50% 37.50% 26% 46.30%
Number of shared trips 58 45 29 27 27 22 46

Figure 5: Visualization of selected metrics for Configuration 3

Figure 6: Pointer + ILP (i.e., Learn2Pool) sensitivity to size of Nearest Neighbor (NN) set

balance between efficacy and efficiency performance (a crucial re-
quirement for applicability of the method), while outperforming
other methods that can achieve this balance in terms of all efficacy
and efficiency measures.

Figure 6 shows results of our sensitivity analysis based the size
of the nearest neighbor (NN) set |𝑁𝑁 | = 𝑛 used for learning the
request priorities in Learn2Pool. As shown in the figure, by increas-
ing 𝑛, as expected while the computation time for ride assignment
increases, the efficacy measures all improve as Learn2Pool can
more extensively explore optimized priorities. We conclude that in

practice, one can use 𝑛 to strike a balance between efficiency and
efficacy as required in real-world use-cases.

6 CONCLUSION AND FUTUREWORK
In this paper we introduce a learning based solution for ride assign-
ment problem in ride sharing systems that offers the most practical
solution by allowing striking a balance between efficacy and effi-
ciency, while demonstrating superior efficiency and efficacy across
all existing methods.

14

Learn2Pool: Efficient and Effective Ride Assignment in
Ride Sharing Systems IWCTS ’22, November 1, 2022, Seattle, WA, USA

In the future, we plan to use transfer learning to learn optimal
assignment policy for groups of similar road networks. Addition-
ally, other aspects such as weight assignment based on predicted
demand and supply as well as re-balancing based on popular ori-
gin/destination locations could be added to the methods to accom-
modate more real-world instances.

ACKNOWLEDGEMENT
The work presented in this paper conducted with support from Uni-
versity of Colorado Denver and the Mountain-Plains Consortium,
a University Transportation Center funded by the U.S. Department
of Transportation. The contents of this paper reflect the views of
the authors, who are responsible for the facts and accuracy of the
information presented.

REFERENCES
[1] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli,

and Daniela Rus. 2017. On-demand high-capacity ride-sharing via dy-
namic trip-vehicle assignment. Proceedings of the National Academy of
Sciences 114, 3 (2017), 462–467. https://doi.org/10.1073/pnas.1611675114
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1611675114

[2] Jean-François Cordeau. 2006. A Branch-and-Cut Algorithm for the Dial-a-Ride
Problem. Oper. Res. 54 (2006), 573–586.

[3] Oscar De Lima, Hansal Shah, Ting-Sheng Chu, and Brian Fogelson. 2020. Efficient
Ridesharing Dispatch Using Multi-Agent Reinforcement Learning.

[4] John Holler, Risto Vuorio, Zhiwei (Tony) Qin, Xiaocheng Tang, Yan Jiao,
Tiancheng Jin, Satinder Singh, Chenxi Wang, and Jieping Ye. 2019. Deep Re-
inforcement Learning for Multi-driver Vehicle Dispatching and Repositioning
Problem. 1090–1095. https://doi.org/10.1109/ICDM.2019.00129

[5] Yan Huang, Favyen Bastani, Ruoming Jin, and Xiaoyang Sean Wang. 2014. Large
Scale Real-Time Ridesharing with Service Guarantee on Road Networks. Proc.

VLDB Endow. 7, 14 (oct 2014), 2017–2028. https://doi.org/10.14778/2733085.
2733106

[6] Yan Jiao, Xiaocheng Tang, Zhiwei (Tony) Qin, Shuaiji Li, Fan Zhang, Hongtu Zhu,
and Jieping Ye. 2020. A Deep Value-based Policy Search Approach for Real-world
Vehicle Repositioning on Mobility-on-Demand Platforms.

[7] MichaelW. Levin. 2017. Congestion-aware system optimal route choice for shared
autonomous vehicles. Transportation Research Part C: Emerging Technologies 82
(2017), 229–247. https://doi.org/10.1016/j.trc.2017.06.020

[8] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2013. T-share: A large-scale dynamic taxi
ridesharing service. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE). 410–421. https://doi.org/10.1109/ICDE.2013.6544843

[9] Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V. Snyder.
2018. Reinforcement Learning for Solving the Vehicle Routing Problem. In
Proceedings of the 32nd International Conference on Neural Information Processing
Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 9861–9871.

[10] Taxi New York (N.Y.) and Limousine Commission. 2019. New York City Taxi Trip
Data, 2009-2018. https://doi.org/10.3886/ICPSR37254.v1

[11] Samitha Samaranayake, K. Spieser, Harshith Guntha, and Emilio Frazzoli. 2017.
Ridepooling with trip-chaining in a shared-vehicle mobility-on-demand system.
1–7. https://doi.org/10.1109/ITSC.2017.8317603

[12] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.
A Unified Approach to Route Planning for Shared Mobility. Proc. VLDB Endow.
11, 11 (jul 2018), 1633–1646. https://doi.org/10.14778/3236187.3236211

[13] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Net-
works. In Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.pdf

[14] Jiachuan Wang, Peng Cheng, Libin Zheng, Chao Feng, Lei Chen, Xuemin Lin,
and Zheng Wang. 2020. Demand-Aware Route Planning for Shared Mobility
Services. Proc. VLDB Endow. 13, 7 (mar 2020), 979–991. https://doi.org/10.14778/
3384345.3384348

[15] Xian Yu and Siqian Shen. 2020. An Integrated Decomposition and Approxi-
mate Dynamic Programming Approach for On-Demand Ride Pooling. IEEE
Transactions on Intelligent Transportation Systems 21, 9 (2020), 3811–3820. https:
//doi.org/10.1109/TITS.2019.2934423

15

https://doi.org/10.1073/pnas.1611675114
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1611675114
https://doi.org/10.1109/ICDM.2019.00129
https://doi.org/10.14778/2733085.2733106
https://doi.org/10.14778/2733085.2733106
https://doi.org/10.1016/j.trc.2017.06.020
https://doi.org/10.1109/ICDE.2013.6544843
https://doi.org/10.3886/ICPSR37254.v1
https://doi.org/10.1109/ITSC.2017.8317603
https://doi.org/10.14778/3236187.3236211
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.14778/3384345.3384348
https://doi.org/10.14778/3384345.3384348
https://doi.org/10.1109/TITS.2019.2934423
https://doi.org/10.1109/TITS.2019.2934423

	Abstract
	1 Introduction
	2 Related Work
	2.1 Insertion versus Batching
	2.2 Optimization Criteria
	2.3 Optimization Strategy
	2.4 Other Categories

	3 Problem Definition
	4 Learn2Pool
	4.1 Integer Linear Programming (ILP)
	4.2 Learning Priority Order of Ride Requests

	5 Experimental Evaluation
	5.1 Experimental Methodology
	5.2 Experimental Results

	6 Conclusion and Future Work
	References

