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ABSTRACT
Reducing emissions of greenhouse gases has become a major chal-
lenge for the next decades. The transportation sector is responsible
for about a quarter of all the CO2 in most developed countries. This
study uses a large set of trajectory data (272.289 trajectories, built
from 75.178.775 GPS points) to analyze and quantify, on a road seg-
ment level, the impacts of driving at a steady speed on the energy
consumption of electrical vehicles. The results show that drivers
should strive to maintain a steady speed for as much as possible as
it can reduce the consumption by up to 42% while increasing the
travel time by just 10%.
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1 INTRODUCTION
The transportation sector is responsible for 23-26% of all the emis-
sions of greenhouse gases (GHG) across developed countries, with
passenger vehicles accounting for as much as 45% of that [18]. Bet-
ter understanding how these vehicles relate to GHGs can be of
paramount importance to reduce gross emissions.

Relating GHGs to internal combustion engine vehicles (ICEV)
is straightforward, but doing it for purely electrical vehicles (EV)
is subtle. ICEVs release GHGs to the atmosphere as they burn fuel
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to power their engines, but EVs use electricity to do so, and while
the vehicles do not emit any GHGs themselves, the generation of
the electricity they use do. For example, in 2019, for each kWh of
electricity produced in the United States, 393 grams of CO2 were
released to the atmosphere, for EU-28, 306 grams, and for China,
560 grams [15].

Eco-driving [4] is a collection of simple advice aimed at chang-
ing driving behaviour in order to reduce both energy consumption
and GHGs emission. While there has been a great amount of in-
terest on eco-driving over the last decade, the vast majority of the
research about it was conducted for ICEVs only, leaving EVs under-
represented in the literature [16].With the electri�cation of vehicles
gaining momentum around the world, quanti�ed information about
the operation of EVs becomes more relevant.

In this study, we use trajectories built from high-frequency GPS
and OBD data to analyze and quantify the impacts of driving at a
steady speed on the energy consumption of EVs. Figure 1 shows
a trajectory and the heat map of the energy consumption as the
vehicle travels from origin (O) to destination (D). Each scale rep-
resents two consecutive GPS points and the energy consumption
(Wh/hm) during the one-second interval between them. Note how
high consumption happens during acceleration, low consumption
happens during braking, and medium consumption happens during
cruising.

Figure 1: Heat map of the energy consumption of a vehicle
during a trajectory.
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We use a large dataset - 272.289 trajectories, built from 75.178.775
GPS points - of high-frequency data - 1 Hz - collected over a period
of 29 months, from January 2012 to May 2014. This allows us to go
beyond the trajectory level to the subtrajectory one. This means
that instead of limiting the analysis to trajectories as a whole, from
origin to destination, we do it at a road segment level. As the OBD
data gives us information about the vehicle, such as how much
power it is consuming at an instant, we can analyze and quantify
how the energy consumption changes on every road segment the
vehicle travels by.

To the best of our knowledge, this is the �rst study to use this
combination of data features. Previous studies either used a lower
number of trajectories (7.989 trajectories in [19]), or low-frequency
data (0,1 Hz in [6]), or data collected over a shorter period (3 months
in [3]), or under controlled conditions (�xed route in [5]).

The remainder of the paper is organized as follows. Section 2
discusses the related work. Section 3 describes the data foundation
of this paper. Section 4 presents the de�nition for steady speed.
Section 5 discusses the data analysis. Finally, Section 6 concludes
the paper.

2 RELATEDWORK
The authors of [9] used GPS and OBD data to evaluate �ve di�erent
eco-driving advice. Results indicated a connection between low
fuel consumption and steady speed. Trajectories with more pro-
portional time driven at a steady speed often showed a lower fuel
consumption when compared to trajectories with less time.

GPS and OBD is also used in [6] to develop an eco-driving system
that provides instant feedback and real-time warnings regarding
fuel consumption for public buses. The system was tested for 90
days and, when compared to the same period of the previous year,
it improved the average fuel consumption by 2.6% to 4.5%.

A compilation of eco-driving research �ndings can be found in
[1] and [8]. The former reported bene�ts ranging from 5% to 30%,
with trial reports being typically placed at the lower end of the scale,
at 4.8% to 6.8%. The study also pointed to an overlooked bene�t
of eco-driving: several studies have claimed that eco-driving can
reduce the accident rate by 40%, improving tra�c safety. The latter
compared the results from di�erent eco-driving training programs.
Aggregated maximum reduction in fuel consumption ranged from
10% to 40%.

In [3], the authors created an eco-driving technique that manages
speed and acceleration to reduce fuel consumption. The goal of their
technique is to smooth tra�c �ow to avoid sudden acceleration and
deceleration, which results in high fuel consumption. Experimental
runs showed that a reduction of 24% in maximum speed reduced
fuel consumption by 13% while increasing travel time by only 6%.

The authors of [5] proposed an online implementation to mini-
mize the energy consumption of EVs by �nding the optimal speed
to travel through a road segment. The speed is calculated and fed
to the driver at the beginning of each segment. Under the same
conditions, results showed that an average reduction of only 2.5%
in average speed reduced the average consumption by 14.1%.

A real-time speed advice is also proposed in [20]. The authors
studied di�erent speed pro�les to better approach a signalized inter-
section in order to reduce the energy consumption for EVs. Results

showed that the eco-driving model provided reduced consumption
by up to 8%.

3 DATA FOUNDATION
In this section, we go over the di�erent data sources we use in this
study. We discuss GPS and OBD data, the road network, trajectory
data, and how we compute the energy consumption. At the end of
the section, we present the data statistics.

3.1 GPS and OBD Data
GPS data [7] describes a vehicle’s location in time in terms of lati-
tude, longitude, and timestamp with high accuracy. GPS data rep-
resents a rich yet cheap source of spatiotemporal data and it has
been used in a wide variety of mobility applications, from humans
and animals to hurricanes and vehicles [11].

The On-Board Diagnostics (OBD) [10] is a standard of protocols
for vehicular diagnostics. The system aggregates information from
multiple sensors in the vehicle, such as the instantaneous speed
and the amount of power the engine is consuming.

By synchronizing the GPS and OBD data, we have what we call
GPS+ points. Each GPS+ point 6 is a tuple h683, ;0C, ;>=, CB, B?4, ?>Fi,
in which 683 is the unique identi�er of the data point, ;0C and ;>=,
the latitude and longitude coordinates, CB , the timestamp, B?4 , the
instantaneous speed of the vehicle, and ?>F , the instantaneous
power of the engine. The value of 683 is created during the experi-
ment setup, ;0C , ;>=, and CB , comes from the GPS data, and B?4 and
?>F , from the OBD data.

3.2 Road Network
A road network can be seen as a directed graph ⌧ (+ , ⇢), with + as
the set of vertices and ⇢, the set of edges, and ⇢ ✓ {(G,~) | (G,~) 2 + 2

and G < ~}. In this case, a road segment is an edge of said network,
while vertices are intersections. This way, a road segment is any
continuous segment of road between two intersections.

We use OpenStreetMap [13], an open-source geographic data-
base, and the Viterbi algorithm to match each GPS+ point to a road
segment [12]. After all GPS+ points are matched to a road segment,
we build the trajectories taken by the vehicles.

3.3 Trajectory Data
A trajectory is a sequence of GPS+ points. Consider the set of tra-
jectories) = {C1, C2, . . . , C<}. For each trajectory C 2 ) , there is a list
of GPS+ points ⌧ = {61,62, . . . ,6=}. In this case, C is considered a
trajectory as long as, for all of the = elements in⌧ , 6=�1 .CB < 6= .CB .
In this study, each trajectory represents a trip between an origin $
and a destination ⇡ .

A subtrajectory is a sequence of consecutive GPS+ points con-
tained inside a trajectory. Consider a trajectory C and its list of
GPS+ points ⌧ = {61,62, . . . ,6=}. Any sequence C 0 with a list of
GPS+ points ⌧ 0 = {68 ,68+1, . . . ,68+: }, for 8 + : 6 =, is considered
a subtrajectory of C as long as ⌧ 0 ✓ ⌧ . Note that, by de�nition, a
subtrajectory is also a trajectory.

In this study, trajectories are split into subtrajectories based on
the road segments the vehicle travels through. Each subtrajectory
contains only the GPS+ points that are matched to a respective road
segment. This way, each trajectory C is a list of subtrajectories) 0 =
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{C 01, C 02, . . . , C 0? }. Each subtrajectory C 0 is as a tuple hBC83, C83, AB83,⌧i,
in which BC83 is the unique identi�er of the subtrajectory, C83 , the
unique identi�er of the trajectory, AB83 , the unique identi�er of the
road segment, and ⌧ , the list of GPS+ points.

Figure 2 shows a heat map of the Copenhagen region. The �gure
shows the road segments with subtrajectories. The di�erent colors
show the number of subtrajectories per road segment.

Figure 2: Heat map of the road segments in the Copenhagen
region.

Figure 3 shows an example of a subtrajectory. Notice that all
the GPS+ points are within a road segment of the road network.
Each blue circle represents a GPS+ point and the table highlights
the attributes of the selected point. Table 1 lists the GPS+ points of
the subtrajectory in Figure 2.

gid lat lon ts spe pow
1 57.043595 9.923151 2012-07-04 15:40:22 65 9.800
2 57.043597 9.922850 2012-07-04 15:40:23 65 9.600
3 57.043598 9.922549 2012-07-04 15:40:24 66 9.800
4 57.043599 9.922251 2012-07-04 15:40:25 64 9.400
5 57.043598 9.921948 2012-07-04 15:40:26 67 9.800
6 57.043600 9.921651 2012-07-04 15:40:27 66 9.600
7 57.043601 9.921352 2012-07-04 15:40:28 64 9.000

Table 1: List of GPS+ points of the subtrajectory in Figure 2.

In this study, the unit for the speed B?4 is km/h and the unit for
the power ?>F is Watts. Also, all values of speed and power are
rounded to their nearest integer.

3.4 Energy Consumption
To calculate the energy consumption between two consecutive
GPS+ points we use the latitude ;0C and longitude ;>= to calculate

Figure 3: A subtrajectory in a road segment in Aalborg, Den-
mark.

the distance 3 and the timestamp CB to calculate the time di�erence
C between them. Together with the power ?>F , we calculate the
energy consumption 4 between two consecutive points 6 9 and 6:
as follows:

4 9 ,: =
?>F 9 ,: · C 9 ,:

3 9 ,:

To calculate the energy consumption for any sequence of points,
we calculate it between all two consecutive points and then, as the
sampling rate between any two points is �xed (1 Hz), we calculate
the average between them. Therefore, for any sequence of GPS+
points ⌧ , its energy consumption ⇢ is calculated as follows:

⇢⌧ =
1
=
·

=’
8=2

48�1,8

If we consider the values from Table 1, we have the following:

Points ?>F (, ) t (h) d (km) e (Wh/km)
1,2 9.700 2,78x10�4 18,21x10�3 148
2,3 9.700 2,78x10�4 18,21x10�3 148
3,4 9.600 2,78x10�4 18,03x10�3 148
4,5 9.600 2,78x10�4 18,33x10�3 145
5,6 9.700 2,78x10�4 17,97x10�3 150
6,7 9.300 2,78x10�4 18,09x10�3 143

Table 2: Values of ?>F , C , 3 , and ⇢ for each two consecutive
points in Table 1.

By taking the average between the six values of 4 from Table
2, we �nd the energy consumption ⇢ of the subtrajectory as 147
Wh/km. Note that, in this study, we do not estimate the energy
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consumption. It is calculated from the ground-truth data obtained
from the GPS and OBD devices. Also, the term energy consumption
is preferred over energy e�ciency because 1) it is more common
when referring to energy or fuel consumed per distance travelled
and 2) we want to avoid any confusion with e�ciency of electrical
motors.

Finally, EVs are capable of recovering some of their kinetic energy
back when braking or going downhill due to regenerative braking
[16]. The regeneration is represented by a negative power ?>F ,
which can lead to a negative energy consumption ⇢. This study
does not focus nor make any evaluation regarding regenerative
braking, but it is important to keep in mind that it exists and makes
braking less impactful for EVs when compared to ICEVs.

3.5 Data Statistics
We use 177 vehicles - 35 Citroën C-Zero, 63 Mitsubishi iMiev, and
79 Peugeot Ion - permanently equipped with both GPS and OBD de-
vices to collect a total of 218.834.510 GPS+ points, between January
2012 and May 2014. From this data, we build 275.994 trajectories,
for a total of 14.473.006 subtrajectories.

As we use sensor data from both GPS and OBD devices, it is
reasonable to expect failures. Therefore, we cleanse the dataset to
remove the points in which there is invalid or missing data. In this
case, we removed all the GPS+ points with:

• Instantaneous power ?>F lesser than -16600 W
• Instantaneous power ?>F greater than 50000 W
• Instantaneous power ?>F missing
• Instantaneous speed B?4 missing
• Timestamp CB missing

We remove all subtrajectories that lose any GPS+ point during
cleansing. We also remove all subtrajectories that have any two
consecutive points with a time di�erence greater than one second,
which can happen when the GPS device loses coverage.

Although subtrajectories are removed in case they are a�ected
by the data cleansing, trajectories that lose any subtrajectory are
not removed. As subtrajectories are matched to a road segment,
they are independent from each other on a segment level, the level
of focus of this study. After cleansing and processing the data, we
have:

• 75.178.775 GPS+ points
• 272.289 trajectories
• 7.579.386 subtrajectories
• 174.182 road segments

4 STEADY SPEED
There are multiple de�nitions for steady speed. The authors of [17]
de�ne steady speed as "absolute incremental speed changes of less
than or equal to 0.1 m/sec/sec during the 1-sec interval". The authors
of [9] claim that steady speed happens when "the speed does not
vary with more that ±1:</⌘ from the speed at the beginning of
the period (the cruise speed) for at least 20 seconds". The authors
of [8] and [16] sustain that, when it comes to eco-driving speed,
"it is usually recommended at or safely below the speed limit". In
this study, we de�ne steady speed as a period of time in which the
speed only varies ±X compared to the speed of beginning of the

period. The X represents how much �uctuation in speed is allowed
for the period.

In a subtrajectory built from GPS+ points, the period is a list of
points in which the speed B?4 of the �rst point 61 is the starting
speed of the period and the speed B?4 of all the other points 6= are
equal or greater than 61 .B?4 � X and equal or lesser than 61 .B?4 + X .
Furthermore, the GPS+ points immediately before and after the
period are outside the X allowed or at the start (or at the end) of the
subtrajectory. We call such period a steady speed period (SSP).

If we consider the subtrajectory from Figure 3 and the values
from Table 1, we have the following:

• for X = 0 km/h: ((%0 = {{61,62}}
• for X = 1 km/h: ((%1 = {{61,62,63,64}, {65,66}}
• for X = 2 km/h: ((%2 = {{61,62,63,64,65,66,67}}

Also, for each subtrajectory, we calculate its amount of steady
speed, in time percentage. The steady speed time (SST ) is calculated
by dividing the sum of the time of all the SSPs of a subtrajectory by
its total time. Again, if we consider the subtrajectory from Figure 3
and the values from Table 1, we have the following:

• for X = 0 km/h: (()0 = 1B/6B = 16%
• for X = 1 km/h: (()1 = 4B/6B = 66%
• for X = 2 km/h: (()2 = 6B/6B = 100%

The total time of the SSP is the time di�erence between the
last and the �rst points of the period. We can also calculate the
total distance, which is the sum of the distance 3 between any two
consecutive points in the period, and the average speed, which is
the average between the speed B?4 of all the points in the period. If
we consider the subtrajectory from Figure 3 and the values from
Table 1, we have a total time of 6 s, a total distance of 108 m, and
an average speed of 65 km/h.

5 DATA ANALYSIS
In this chapter, we analyze and quantify the impacts of driving at
a steady speed on the energy consumption and the travel time of
EVs.

5.1 Delta Speed
We start by quantifying the impact of di�erent levels of �uctuation
in speed, which are represented by the X (or delta speed). Figure
4 shows the energy consumption of the steady speed periods (see
Section 4) for each X (from 0 to 4 km/h).

Figure 4: Energy consumption per delta speed.
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There is a slight increase in the median value, from 138 to 151
Wh/km, or 9.4%, but a great increase in variance. On the consump-
tion side, the maximum value increases from 366 to 724 Wh/km,
or 98%. On the regeneration side, it goes from -88 to -394 Wh/km,
or 348%. The negative consumption is due to regenerative braking
(see Section 3.4).

We now analyze how increasing the X impacts the number of
SSPs and the average time and distance driven at a steady speed.
Table 3 shows the total number of periods, the average time, and
the average distance per delta speed (see Section 4).

X No. of Periods Time (s) Distance (m)
0 11.753.325 2,38 39,63
1 14.486.179 2,83 45,40
2 14.732.898 3,25 50,84
3 14.955.716 3,52 53,94
4 14.719.591 3,79 57,34

Table 3: Number of periods, average time, and average dis-
tance per delta speed of the SSPs.

Increasing the X increases the number of periods and make them
last longer, but there are diminishing returns in doing so. Going
from X = 0 to 1 km/h increases the number of periods by 19%, the
time by 19%, and the distance by 15%. Going from X = 1 to 2 km/h
increases the number of periods by 17%, the time by 15%, and the
distance by 12%. Going from X = 2 to 3 km/h increases the number
of periods by 15%, the time by 8%, and the distance by 6%. Finally,
going from X = 3 to 4 decreases the number of periods by 2% and
increases the time by 8%, and the distance by 6%. This shows that
allowing more �uctuations in speed indeed increases the length of
the periods, but there is a trade-o�, as it also increases the energy
consumption.

The low number of periods for X = 0 indicates that driving with
no �uctuations in speed is too strict. The diminishing returns from
X > 1 indicates that allowing more �uctuations in speed increases
the time and distance of the steady speed period, but at the cost
of a higher energy consumption. Therefore, X = 1 gives the best
trade-o� between number of periods, time, distance, and energy
consumption. Regardless, the X is an important aspect of the SSPs
and we continue to use it throughout the study as a variable of
interest.

5.2 Steady Speed Time
As the energy consumption increases going from a lower X to a
higher one, we expect that the subtrajectories that amount more
steady speed time (see Section 4) consume less energy compared to
the ones with less time. Figure 5 shows the energy consumption of
the subtrajectories based on their SST for each X . For this plot, we
use increments of 10%, except for the �rst one, which represents
the trips with no SST at all. The outlier behaviour of the ranges
(0,10] for delta speeds 3 and 4 is likely due to the little amount of
data in said ranges.

Figure 5: Energy consumption per steady speed time per delta
speed.

Again, the average energy consumption increases going from a
lower X to a higher one. Most importantly, the average consumption
decreases with the increase of the SST. For X = 1 km/h, the subtrajec-
tories with zero SST have an average consumption of 310 Wh/km.
By increasing the SST to (10,20]%, the average consumption goes
down to 252 Wh/km, a reduction of 19%. By increasing the SST to
(40,50]%, the average consumption goes down to 185 Wh/km, a
reduction of 40%. For X = 3 km/h, the subtrajectories with zero SST
have an average consumption of 451 Wh/km. By increasing the SST
to (10,20]%, the average consumption goes down to 353 Wh/km, a
reduction of 22%. By increasing the SST to (40,50]%, the average
consumption goes down to 247 Wh/km, a reduction of 45%.

We also analyze if maintaining a steady speed over multiple SSPs
makes any di�erence on the energy consumption. We compare
subtrajectories with the same SST, but having a di�erent number
of periods. Figure 6 shows the energy consumption of the subtra-
jectories based on their SST for a di�erent number of periods (from
1 to 5). As the X is not a variable of interest for this plot, use �x X =
1 based on the �ndings of Section 5.1. The ranges of (0,10], (10,20],
and (90,100] are removed as the vast majority of the subtrajectories
with those percentages have only one period. The outlier behaviour
of the range (50,60] for 1 period is likely due to the little amount of
data in said range.

Figure 6: Energy consumption per steady speed time per
number of steady speed periods.
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For low SST, 20 to 50%, the number of periods have a higher
impact on the energy consumption, with a constant di�erence of
around 8-10 Wh/km between each curve. For medium to high SST,
50 to 90%, the gap is much smaller, around 4-5Wh/km between each
curve. This shows that there is a cost associated to breaking the
SSP, specially at low amounts of SST. This, in combination with the
results from Figure 5, shows that drivers should strive to maintain
a steady speed for as much and as long as possible.

Just like the X , the SST is an important aspect of steady speed
and we continue to use it throughout the study as a variable of
interest.

5.3 Average Speed
We now analyze how steady speed performs over di�erent average
speeds (see Section 4). Figure 7 shows the energy consumption per
average speed for all delta speeds. For this plot, we use the average
speed of the SSTs in increments of 10 km/h. The ranges of (0,10]
and (10,20] are removed due to the little amount of data in said
ranges.

Figure 7: Energy consumption per average speed per delta
speed.

The SSTs retain the characteristic parabolic curve of EVs [2], but
the plot shows a clear separation between the curves up until an
average speed of 40 km/h, with a di�erence of 36-39% between delta
speeds 0 and 4. From 40 to 90 km/h, the curves show little separation
and even some overlap. And above 90 km/h, the curves separate
again, but show less separation than before, with a di�erence of
6-10% between them.

The data indicates that the overlap between 40 and 90 km/h is
due to regenerative braking. As this study is not interested in the
e�ects of braking, we choose to not go into more details.

Now, instead of looking at just the SSPs, we look at the subtra-
jectories as a whole. For that, we use the SST instead of the delta
speed. Figure 8 shows the energy e�ciency per average speed for
six di�erent ranges of SST. The ranges of (0,10] and (10,20] are
removed due to the little amount of data in said ranges.

Figure 8: Energy e�ciency per average speeds per steady
speed time.

Again, the curves show a parabolic curve, but now they show
even more separation between them. From 40 to 100 km/h, im-
proving the SST from (0,25]% to (75,100]% can reduce the energy
consumption by 17-50%. Also, the plot shows that from 80 km/h and
above, the di�erence between the curves of (50,75]% and (75,100]%
is around 5%. This suggests that, at high speeds, drivers do not need
to maintain a steady speed all the time to get the most from it.

Overall, driving at a steady speed is bene�cial across all speeds,
but it is even more so at low and medium speeds, from 30 to 70
km/h. This is an interesting �nding as this range is similar to the
speed limit in urban areas for most countries [14].

5.4 Road Segment Type
We now analyze how di�erent road types a�ect driving with a
steady speed. We consider six di�erent types available on Open-
StreetMap (see Section 3.2): residential (RE), tertiary (TE), secondary
(SE), primary (PR), trunk (TR), and motorway (MO). In order to
assess if di�erent road types have any impact on the steady speed,
we start by looking at the average time of the SSPs (see Section 4)
in each road type. Figure 11 shows the average SSP time per road
type per delta speed.

Figure 9: Average SSP time per road type per delta speed.

The average SSP time is much higher on motorways and trunks,
while it is much lower on tertiary and residential roads. This is
in line with their purpose. Motorways and trunks are designed to
allow high-speed tra�c - they have regulated tra�c �ow, multiple
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lanes, higher speed limits, few tra�c calming, and few signalized
intersections. Tertiary and residential roads are designed to provide
access to urban areas and, in the other hand, have fewer lanes, lower
speed limits, more tra�c calming, andmore signalized intersections.
Also, the plot indicates that, regardless of the road type, maintaining
a steady speed with no �uctuations in speed for a long time is
di�cult in any road type. This corroborates the �ndings from Table
3.

Another way to assess how di�erent road types can impact the
amount of steady speed is by looking at SST. Figure 10 shows the
percentage of subtrajectories per road type per steady speed time.
To simplify, we use ranges of 20% of SST. As the X is not a variable
of interest for this plot, use �x X = 1 based on the �ndings of Section
5.1.

Figure 10: Percentage of subtrajectories per road type per
steady speed time.

The SST increases as we move from residential roads to motor-
ways. For residential roads, an average of 43% of the trajectories
have up to 40% of steady speed time, while only 21% have at least
80%. For motorways, only 4% of the subtrajectories have up to 40%
of steady speed time, while 67% have at least 80%. As we move from
residential roads to motorways, the average length and speed limit
of each road type increases. For example, for the road segments
in our dataset, residential roads have an average length and speed
limit of 89 m and 46 km/h, respectively. For motorways, the aver-
age length is 477 m and the average speed limit, 107 km/h. Also,
moving from residential roads to motorways decreases the number
of calmings, crossings, intersections, speed bumps, and tra�c lights
on the roads. This may indicate a strong correlation between SST
and longer roads, higher speed limits, and less tra�c elements.

Finally, we analyze the energy consumption for di�erent road
types using the delta speed as a variable of interest. Figure 11 shows
the average energy consumption of the SSPs per road type per delta
speed.

Figure 11: Energy consumption per road type per delta speed.

The plot shows two interesting �ndings. First, the average con-
sumption on residential roads is much higher than the others, 30-
35% across all road types. This can be due to a few reasons, like
low average speeds or constant start and stop, making it harder
to maintain a steady speed. Second, the average consumption on
motorways is virtually the same for all delta speeds. This can be
due to a higher average speed, close to the optimal speed of the
vehicle, or high (() .

5.5 Seasonality
As previously discussed in Section 3.5, the data used in this study
was collected over a period of 29 months, from January 2012 to May
2014. This allows us to explore if there is any seasonality when it
comes to steady speed. We start with the day and move to the week,
month, and year. Figure 12 shows the average steady speed time
per hour of the day per road type. In this section, as the X is not a
variable of interest for this plot, use �x X = 1 based on the �ndings
of Section 5.1.

Figure 12: Steady speed time per hour of the day per road
type.

There is little di�erence - an average of 1% - in steady speed time
throughout the day for all road types, except motorways. For those
roads, there is a decrease of 5% between 6:00 and 8:00 and a decrease
of 4% between 15:00 and 17:00. These time frames coincide with
the periods when people go to and get out of work, respectively.
As this pattern does not repeat for any of the other road types, it
indicates that steady speed on motorways has a higher sensibility
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to tra�c volume. The outlier behaviour from 0:00 to 5:00 is likely
due to little amount of data in said period.

We now move to the week. Figure 13 shows the average steady
speed time per day of the week per road type.

Figure 13: Steady speed time per day of the week per road
type.

Once again, there is little di�erence in steady speed throughout
the week for all road types, except motorways. For those roads, the
average SST from Monday to Friday is 84%, but it increases to 88%
on Saturdays and Sundays. As there is less tra�c volume on these
days, this is another indication that steady speed on motorways
have a higher sensibility to tra�c volume. This pattern repeats for
the other road types, but the increase is of 1% at most.

We now move to the month. Figure 14 shows the average steady
speed time per day of the month per road type.

Figure 14: Steady speed time per day of the month per road
type.

There is no clear pattern for any road type throughout the days
of the month - changes are 0.5% at most. However, it reinforces
the �ndings in Figure 11. Motorways are clearly the best roads for
steady speed, with an average of 85% SST. They are followed by
trunks, primary, and secondary roads, with averages between 71-
73%. Then we have tertiary roads, with an average of 65%. Finally,
we have residential roads with an average of 57%. This clearly shows
that di�erent road types can play a big role in facilitating steady
speed.

Finally, we move to the year. Figure 15 shows the average steady
speed time per month of the year per road type.

Figure 15: Steady speed time per month of the year per road
type.

There is slightly more - an average of 2% - steady speed from
January to March and again in July and August for all road types,
except trunks. The former may be explained by the cold weather,
which tends to make drivers drive more carefully and slower. The
latter may be explained by the summer vacations, which reduces
tra�c volume. The outlier behaviour for trunks is likely due to the
little amount of data for said road type.

Overall, it seems that maintaining a steady speed is mildly in-
�uenced by seasonality, except for a few circumstances and road
types. On the one hand, this suggests that the drivers have even
more responsibility when it comes to steady speed, with seasonal
factors playing a small role in it. One the other hand, this shows
when and where drivers can increase their steady speed time and
save even more energy.

5.6 Travel Time
Maintaining a steady speed means accelerating less. Therefore,
driving at a steady speed tends to reduce the average speed and
therefore the travel time - the time to travel through a road segment.
In this section, we analyze how maintaining a steady speed impacts
the travel time.

As this study focus on the road segment level, we start by looking
at each road segment and how the amount of steady speed changes
the average travel time. To simplify the analysis and maximize the
number of road segments at the same time, we elect two variables
of interest. First, we use only X = 1. As discussed in Section 5.1, this
is the value that gives the best trade-o� between number of periods
and energy consumption. Second, we use four categories of SST,
none (0%), low (0-33%), medium (33-66%), and high (66-100%). This
combination gives us a total of 28.951 road segments that together
amount 4.009.299 subtrajectories (this is 23% and 60% of all the road
segments in our dataset, respectively).

We start with the di�erence in both travel time and energy
consumption going from zero to low, medium, and high SST. As
we are interested in how steady speed relates to travel time and as
di�erent road types have di�erent purpose, which directly impacts
the travel time, we consider the di�erence for each road type -
residential (RE), tertiary (TE), secondary (SE), primary (PR), trunk
(TR), and motorway (MO). Figures 16 and 17 the average travel
time and average energy consumption, respectively, per SST per
road type.

87



IWCTS ’22, November 1, 2022, Sea�le, WA, USA David et al.

Figure 16: Travel time per steady speed time per road type.

Figure 17: Energy consumption per steady speed time per
road type.

The plots show that the subtrajectories with zero steady speed
have, on average, the lowest travel time, but the highest energy
consumption. They also show that increasing the SST leads to an
increase in travel time and a decrease in energy consumption. Sur-
prisingly, the increase in travel time by increasing the SST is not
linear. It peaks at low SST and decreases. For example, in motor-
ways, the average travel time for the subtrajectories with none SST
is 4.50 seconds. For the subtrajectories with low SST, the average
travel time is 6.54 seconds, an increase of 45%. But for the subtrajec-
tories with medium SST, the average travel time is 5.91 seconds, an
increase of 31%, and for the ones with high SST, the average travel
time is 4.95 seconds, an increase of just 10%. Tertiary, cecondary,
and primary roads show a similar behaviour. For tertiary roads, the
percentages are 61%, 45%, and 23%. For secondary roads, they are
51%, 30%, and 9%, respectively. And for primary roads, they are 52%,
33%, and 10%, respectively.

Regarding the energy consumption, there is a slight increase
moving from zero to low SST for trunks, primary, secondary, and
tertiary roads, but there is decrease of around 25% moving from
zero to medium SST, and a decrease of around 45% moving from
zero to high SST for all road types, except motorways. For this type
of roads, moving from zero to medium SST decreases the energy
consumption by 6%, while moving from zero to medium and high
SST increases the energy consumption by 4% and 8% respectively.
This behaviour may be due to the fact that motorways are designed
to allow for higher speeds and, as showed in Figures 7 and 8, higher
speeds lead to a higher energy consumption.

The �ndings from both �gures indicate that secondary and pri-
mary roads o�er the best trade-o� between travel time and energy
consumption by driving at a steady speed, followed by tertiary
roads. On secondary and primary roads, it is possible to reduce the
energy consumption by up to 42% while increasing the travel time
by just 10%. On tertiary roads, it is possible to reduce the energy
consumption by up to 39%, but by increasing the travel time by
23%.

Increasing the SST reduces the acceleration, therefore reducing
the average speed. As driving with a lower average speed increases
the travel time, logically one can expect this increase to be lower
on shorter segments and higher on longer ones. Now, instead of
looking at the di�erent road types, we look at the length of the
road segments. Figures 18 and 19 show the average travel time
and average energy consumption, respectively, per (() per road
segment length. The range of (0,20] is removed due to the little
amount of data in said range.

Figure 18: Travel time per steady speed time per road segment
length.

Figure 19: Energy consumption per steady speed time per
road segment length.

Figure 18 con�rms that the di�erence in travel time as a result
of increasing the SST increases with the increase in road segment
length. On segments of up to 120 m of length, going from zero to 66-
100% SST increases the average travel time by 22% while reducing
the energy consumption by 31-43%. For road segments between 120
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and 200 m of length, going from zero to 66-100% SST increases the
average travel time by 38% while reducing the energy consumption
by 42%.

The �ndings of this section are even more meaningful when we
look at the number of roads segments per type and length. Out of
all the 174.182 road segments in our dataset, 12% are secondary
and 5% are primary roads. In terms of length, 62% of them have
120 m or less. If we look at the number of subtrajectories, out of
all the 7.579.386 subtrajectories in our dataset, 24% of them are in
secondary roads and 9% are in primary roads. In terms of length,
64% of them are in road segments with 120 m or less.

This shows that there are many roads where drivers can reduce
their energy consumption by almost half if they are willing to
increase their travel time by up to 10-22%.

6 CONCLUSION
This paper used a large dataset of 272.289 trajectories, 7.579.386 sub-
trajectories, and 75.178.755 GPS+ points to analyze and quantify the
impacts of driving with a steady speed on the energy consumption
of EVs on a road segment level.

The study showed there is a strong correlation between main-
taining a steady speed and low energy consumption, but most
importantly, it quanti�ed how much energy can be saved over a
wide range of situations. It identi�ed the best amount of �uctua-
tions in speed for steady speed as X = 1 km/h, as it gives the best
balance between number of steady speed periods and energy con-
sumption. It showed that increasing the steady speed time reduces
the energy consumption in a linear fashion. In terms of average
speed, it showed that steady speed is bene�cial across all speeds, but
mostly speeds used in urban areas. In terms or road infrastructure,
it identi�ed that trunks and motorways allow for more steady speed
time. Also, it identi�ed and quanti�ed that it is easier to maintain a
steady speed when there is less tra�c volume.

Finally, it identi�ed and quanti�ed windows of opportunity, like
on secondary and primary roads, where drivers can save energy
up to 42% while increasing the travel time by just 10%. Most impor-
tantly, this study showed that it is possible for every driver to start
saving on energy, and therefore on greenhouse gases, right now
as driving at a steady speed does not require any new or special
equipment.

Even though this paper quanti�ed several aspects of steady speed
and energy consumption, there still much to explore. For future
work, we plan on dive in what and how di�erent tra�c elements -
such as roundabouts, speed bumps, and tra�c lights - impact the
energy consumption. Also, we plan on study steady speed from the
perception of the driver, mostly what it is needed for them to get
better at it.
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