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ABSTRACT
This paper proposes an approach to analyze the impact of multi-

modal Public Transit (PT), combining conventional fixed-route tran-

sit and Demand-Responsive Transit (DRT), on equality in transport

accessibility distribution.We construct a graphmodel ofmultimodal

PT in Neo4j, based on General Transit Feed Specification (GTFS)

data, modeling DRT analytically (using continuous approximation).

We quantify service quality on any location using an accessibility
measure, indicating how easily other places or opportunities can

be reached. We quantify inequality of accessibility distribution. We

state the problem of allocating a DRT fleet to minimize inequality

and show its NP-completeness. We showcase our approach on the

transportation network of the French town of Royan.

CCS CONCEPTS
• Applied computing→ Transportation; • Information sys-
tems→Graph-based database models; •Mathematics of com-
puting → Combinatorial optimization.

KEYWORDS
transportation, optimization, graph databases

ACM Reference Format:
Cathia Le Hasif, Andrea Araldo, Stefania Dumbrava, and DimitriWatel. 2022.

A Graph-Database Approach to Assess the Impact of Demand-Responsive

Services on Public Transit Accessibility. In The 15th ACM SIGSPATIAL In-
ternational Workshop on Computational Transportation Science (IWCTS ’22),
November 1, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3557991.3567798

1 INTRODUCTION
Effective mobility shapes the quality of life and enables economic

development of urban conurbations. At the same time, transport is

one of the most pollutant human activities and urgent actions are

needed in order to achieve the ambitious zero-emission goals that

several (supra)national authorities set for the following years.While

Public Transit (PT) plays a pivotal role to guarantee sustainable

and effective mobility in urban conurbations, the quality of service

is unequally distributed [5], keeping a large part of the population
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with poor PT service, thus forcing them to rely on private cars.

Complementing conventional PT, solely based on fixed lines, with

other more flexible modes can relieve this issue [3, 4, 7]. In this

paper, we consider a Demand-Responsive Transit (DRT) service,

in which vehicles adapt their routes to user requests. Despite the

fact that DRT has been shown to be an effective complement of

PT in low-demand areas [7, 10], no studies exist, to the best of our

knowledge, to quantify its impact in the reduction of inequality

of PT accessibility. Ours is a first preliminary work toward an open
data-driven computational approach to enable such quantification.

To efficiently and scalably analyze PT, we resort to graph databases

systems, which have been developed to address the ever-growing

need for processing highly interconnected data, in a wide variety

of areas. We leverage these to implement our formal model, to vi-

sualize and explore transport graphs, as well as to extract patterns

and compute relevant metrics, using custom graph queries and

algorithms. We summarize our contributions as follows:

• We formalize an optimization for allocating DRT vehicles

with the objective of reducing accessibility distribution in-

equality and we show its NP-completeness.

• We model multi-modal transit, consisting of conventional

fixed lines and DRT (represented analytically via continuous

approximation). The model is a single graph, amenable to

simple computation of accessibility computation, via well-

known graph-algorithms.

• We implement the above model in the Neo4j graph database

[2] as a property graph, built based on open data (GTFS) [1].

Note that our proposed approach is generic and can be used to analyze
any city for which the corresponding GTFS data is available. For

illustrative purposes, we have chosen the city of Royan as use-

case. The size of its PT graph is large enough to be representative,

while maintaining tractability (≈ 18.8K nodes and ≈ 7.3K arcs) and

its structure has all the elements needed to observe the impact

that deploying DRT services has on the accessibility distribution.

While the paper presents preliminary results, we are working on

extending it into a usable tool for PT planners (§4).

2 MODEL
Table 1 provides the key notations and values used henceforth.

We compute accessibility on a generic weighted directed graph

𝐺 = (V,A, 𝜔 (·)), where V is the set of nodes, A - the set of arcs,

and 𝜔 (·) - the weight function. We partition V into: a set C of

centroids, from which we assume all passengers start, a set S of

physical stops and, for each 𝑠 ∈ S, a set ST (𝑠) corresponding to

the service of the stop, from a specific transit line, at a specific time

(called hereinafter a stoptime). Further details are given in §2.3.
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Symbol Description Values
V, A, 𝜔 ( ·) Nodes, arcs, weights |V |=18892, |A |=73714,𝜔 ( ·) ∈ [0, 38400]
𝜉 Tessellation size 1km

𝜏 Walk distance (all walk arcs≤ 𝜏 ) 1km

𝑣𝑤 Walk speed 3km/h

𝐿,𝑊 Height and width of the DRT area L = 4km, W = 2km

S, SDRT
Stops [served by DRT] S = 749, SDRT

= 20

C, C(𝑠 ) Centroids [in the DRT region of 𝑠] C = 1320, C(𝑠 ) = 16

D(𝑐 ) Potential destinations of 𝑐 {𝑠 ∈ S|2km ≤ 𝑑 (𝑐, 𝑠 ) ≤ 10km}
𝜌 Demand density 26 pax/km

2
-h

𝑡0 Considered departure time 8h30

𝑀 Avg. no. of needed DRT vehicles 𝑀 = 21.0

Table 1: Notation and numerical values
Within the set A, we distinguish the arcs Aw

, which represent

a walk connection between any centroid 𝑐 and a close stoptime 𝑣 .

In addition, a subset of stops SDRT
can be served by a DRT

service deployed in a limited region close to each stop. We call C(𝑠)
the set of centroids within that region, for any 𝑠 ∈ SDRT

. The set of

arcsADRT ⊂ A represent DRT connections between each centroid

in C(𝑠) and stoptimes 𝑣 ∈ ST (𝑠). For any DRT-arc 𝑎 ∈ ADRT
, the

weight 𝜔 (𝑎) depends on the number 𝑞 of DRT vehicles deployed

around the corresponding stop. The formulas for computing the

graph’s weights are described in §2.3.

2.1 Accessibility and inequality
We evaluate the inequality in the distribution of PT accessibility [8].

The accessibility of a location indicates how easy it is to reach other

locations. For ease of representation, we focus on its opposite, i.e.,

the inaccessibility. Let 𝑇 (𝑐, 𝑣) be the weight of the shortest path

from a centroid 𝑐 to a stop in D(𝑐) ⊆ S - a set of potential destina-

tions (Table 1). The inaccessibility of the centroid 𝑐 ∈ C is 𝑖𝑎(𝑐) =
1

|D (𝑐 ) | ·
( ∑
𝑠∈D(𝑐 )

𝑇 (𝑐, 𝑠)
)
. To quantify inequality, we compute the

Palma index [9]. We denote with Cworst

10
the set of 10% of centroids

suffering from the largest inaccessibility and with Cbest

40
the set of

40% of centroids enjoying the lowest inaccessibility, we compute

inequity as 𝐼 (𝐺, {𝜔 (𝑎)}𝑎∈A ) = ∑
𝑐∈Cworst

10

𝑖𝑎(𝑐)/ ∑
𝑐∈Cbest

40

𝑖𝑎(𝑐).

This value can be obtained in polynomial time, by adapting the

Dijkstra algorithm to compute𝑇 (𝑐, 𝑣), for each pair of centroid and

stop. Note that the more the accessibility values are equal, the less

𝐼 (𝐺,𝜔) is. Our objective is then to minimize the value of 𝐼 (𝐺,𝜔),
without diminishing the accessibility of any centroid. To do so, we

have one lever: we are given 𝑄 routing vehicles (DRT buses, for

instance) that can be used to decrease the time needed to reach stop

𝑠 from a centroid.

2.2 Problem Statement
We now state the problem of assigning DRT vehicles to different

regions, in order to minimize inequality (§2.1), and show its NP-

completeness. We will explore resolution heuristics in future work.

Let 𝑓 : A𝐷𝑅𝑇 × N→ N be a function that can be computed in

polynomial time. By allocating𝑞 DRT vehicles to the stop 𝑠 ∈ S𝐷𝑅𝑇
,

the weight of every arc (𝑐, 𝑣) ∈ A𝐷𝑅𝑇
, from any centroid 𝑐 ∈ C(𝑠)

to any stoptime ST (𝑠), is reduced by 𝑓 ((𝑐, 𝑣), 𝑞). This increases the
accessibility of those centroids. We define the assignment vector

q = (𝑞𝑠 , 𝑠 ∈ SDRT) ∈ N |SDRT |
, which allocates 𝑞𝑠 vehicles to each

𝑠 ∈ SDRT
. Let {𝜔q (𝑎)}𝑎∈A be the weights obtained from q. Our

optimization problem can thus be formulated as follows.

Definition 2.1 (Problem (EQ)). Given a graph 𝐺 = (V,A), a
weight function𝜔 and an integer𝑄 , find the assignment q = (𝑞𝑠 , 𝑠 ∈
SDRT) satisfying ∑

𝑠∈SDRT

𝑞𝑠 ≤ 𝑄 and minimizing 𝐼
(
𝐺, {𝜔q (𝑎)}𝑎∈A

)
.

NP-Completeness. We now prove the NP-Completeness of this

problem in the general case, using a polynomial reduction from

the knapsack problem, in which, given two sets (𝑑1, 𝑑2, . . . , 𝑑𝑛) and
(𝑢1, 𝑢2, . . . , 𝑢𝑛) of integers and two integers 𝐷 and𝑈 , we search for

𝐽 ⊂ ⟦1;𝑛⟧, such that

∑
𝑖∈ 𝐽 𝑢𝑖 ≥ 𝑈 and

∑
𝑖∈ 𝐽 𝑑𝑖 ≤ 𝐷 .

Theorem 2.2. The decision version of (EQ) is NP-Complete.

Proof. We associate a rational 𝐼𝑁 to the problem (EQ) and

search for the existence of a feasible assignment q with inequality

𝐼
(
𝐺, {𝜔q (𝑎)}𝑎∈A

)
lower than 𝐼𝑁 . The inclusion in NP is trivial.

Considering that 𝑓 can be computed in polynomial time, one can

compute 𝐼
(
𝐺, {𝜔q (𝑎)}𝑎∈A

)
in polynomial time, for any given as-

signment q.
We now prove there exists a polynomial time reduction from the

knapsack problem to (EQ). From a knapsack instance J , we build

an instance I = (𝐺,𝜔, 𝑓 ,𝑄) as follows:
• We set an integer𝑀 to max(𝑢𝑖 + 2) .
• We construct the graph 𝐺 containing 𝑛 + 1 stops

𝑠1, 𝑠2, . . . , 𝑠𝑛, 𝑠𝑛+1, 𝑛 + 1 stoptimes 𝑣1, 𝑣2, . . . , 𝑣𝑛+1 and 10𝑛

centroids 𝑐1, 𝑐2, . . . , 𝑐𝑛, 𝑐
′
𝑛+1, 𝑐

′
𝑛+2, . . . , 𝑐

′
10𝑛

.

• We set C(𝑠𝑖 ) = {𝑐𝑖 }, ST(𝑠𝑖 ) = {𝑣𝑖 }, and S𝐷𝑅𝑇 =

{𝑠1, 𝑠2, . . . , 𝑠𝑛 }.
• For 𝑖 ∈ ⟦1;𝑛⟧, each centroid 𝑐𝑖 is linked to the stoptime 𝑣𝑖 with

one arc (𝑐𝑖 , 𝑣𝑖 )𝑤 ∈ A𝑤
and another arc (𝑐𝑖 , 𝑣𝑖 )𝐷𝑅𝑇 ∈ A𝐷𝑅𝑇

. For

𝑖 ∈ ⟦𝑛 + 1; 10𝑛⟧, each centroid 𝑐′
𝑖
is linked to the stoptime 𝑣𝑛+1 with

only one arc (𝑐′
𝑖
, 𝑣𝑛+1 )𝑤 ∈ A𝑤

. In addition, A contains the arcs

(𝑣𝑖 , 𝑠𝑖 ) , (𝑣𝑖 , 𝑣𝑛+1 ) and (𝑣𝑛+1, 𝑣𝑖 ) , for 𝑖 ≠ 𝑛 + 1.

• For 𝑖 ∈ ⟦1;𝑛⟧, 𝜔 ( (𝑐𝑖 , 𝑣𝑖 )𝑤 ) = 𝜔 ( (𝑐𝑖 , 𝑣𝑖 )𝐷𝑅𝑇 ) = 𝑀 . For 𝑖 ∈
⟦𝑛 + 1; 10𝑛⟧, 𝜔 ( (𝑐′

𝑖
, 𝑣𝑛+1 )𝑤 ) = 1. Other arcs are weighted with 0.

• For 𝑖 ∈ ⟦1;𝑛⟧, 𝑓 ( (𝑐𝑖 , 𝑣𝑖 ), 𝑞) = 0 if 𝑞 < 𝑑𝑖 , and𝑀 − 𝑢𝑖 otherwise.

• Finally, we set𝑄 = 𝐷 and 𝐼𝑁 = 𝑛𝑀−𝑈
4𝑛

.

This transformation from J to I is polynomial.

Note that we can consider only the feasible assignments q of I,
where 𝑞𝑠𝑖 is either 0 or 𝑑𝑖 , for every 𝑖 ≤ 𝑛. We call such a solution

a canonical assignment. For any non canonical assignment, there

exists a canonical one with same Palma index, since by construc-

tion 𝑓 ((𝑐𝑖 , 𝑣𝑖 ), 𝑞) is null on ⟦0;𝑑𝑖 − 1⟧ and constant on ⟦𝑑𝑖 ;𝑄⟧. In
addition, there exists a bijection from the canonical assignments to

the subsets of ⟦1;𝑛⟧ satisfying

∑
𝑖∈ 𝐽 𝑑𝑖 ≤ 𝐷 : from q, we can define

𝐽 ⊂ ⟦1;𝑛⟧ as the set {𝑖 |𝑞𝑣𝑖 ≥ 𝑑𝑖 }. Thus, the associated canonical

assignment has the inaccessibility values: 𝑖𝑎(𝑐′
𝑖
) = 1 if 𝑖 ≥ 𝑛 + 1,

𝑖𝑎(𝑐𝑖 ) = 𝑀 , if 𝑖 ∉ 𝐽 , and 𝑖𝑎(𝑐𝑖 ) = 𝑀 − 𝑢𝑖 , otherwise. Note that

the two last values are greater than 2: Cworst

10
= {𝑐1, 𝑐2, . . . , 𝑐𝑛}

and Cbest

40
= {𝑐′

6𝑛+1, 𝑐
′
6𝑛+2, . . . , 𝑐

′
10𝑛

}. Thus, 𝐼
(
𝐺, {𝜔q (𝑎)}𝑎∈A

)
=

𝑛𝑀 − ∑
𝑖∈ 𝐽 𝑢𝑖/4𝑛. We then immediately have that

∑
𝑗∈ 𝐽 𝑢𝑖 ≥ 𝑈 if

and only if 𝐼
(
𝐺, {𝜔q (𝑎)}𝑎∈A

)
≤ 𝐼𝑁 .

Then, there exists a polynomial time reduction from the knapsack

problem to (EQ). □

Note that this reduction could be adapted to any fixed network.

Changing the network would add a fixed value to the accessibility

of all the centroids that can be balanced with the weights of the arcs

and the function 𝑓 . However this idea is not immediately achievable
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if we consider realistic functions 𝑓 where the value 𝑓 (𝑣, 𝑞) should
increase continuouslywith𝑞, possiblywith a threshold representing

the number of vehicles needed before the driving time takes an

advantage on the walking time. Further work is then needed to

search for the complexity of this problem in realistic instances.

2.3 Graph model of multimodal public transit
2.3.1 Graph model of fixed public transit. We now render the

generic graph model from §2 more specific. We detail the con-

struction of the arcs and weights and how such concepts map to

GTFS data. Let us denote with L and with R𝑙 the set of runs, each
corresponding to a vehicle traveling along the line and departing

from the terminal at a specific time. GTFS data associate a stoptime

𝑣 = (𝑠, 𝑟 ) the event of a run 𝑟 , of a line 𝑙 , passing by physical stop 𝑠 .

We denote with 𝑡 (𝑣) the time in which this even happens. In our

graph model stoptimes are represented as nodes. The stops times

related to a physical stop and line 𝑙 serving that stop are

ST (𝑠, 𝑙) = {𝑣 = (𝑠, 𝑟 ) |𝑟 ∈ R𝑙 .}

ST (𝑠) =
⋃
𝑙∈L

ST (𝑠, 𝑙) .

We add arcs 𝑎 between stoptimes 𝑣 and 𝑣 ′ based on the following

rules. An arc 𝑎 is added between stoptime 𝑣 and 𝑣 ′ if there exists a
run (of any line) that serves 𝑣 and then 𝑣 ′ immediately after. Take a

stoptime 𝑣 ∈ ST (𝑠, 𝑙). We add the following set of arcs, that allow

to change from a line to another at stop 𝑠:{
𝑎 = (𝑣, 𝑣𝑙 ′ ) |𝑙 ′ ∈ L serving 𝑠, 𝑣𝑙 ′ ∈ ST (𝑠, 𝑙 ′), 𝑣𝑙 ′ = argmin

𝑣′∈ST(𝑠,𝑙 ′ )
𝑡 (𝑣 ′)

}
.

(1)

To let paths end to physical stops, we add the following arcs:

{𝑎 = (𝑣, 𝑠) |𝑣 ∈ ST (𝑠), 𝑠 ∈ S} (2)

To define the centroids C, we tessellate the area into square tiles
of side 𝜉 . The centroids are the centers of such tiles. We consider

journeys start at time 𝑡0. The time at which a user can reach stop 𝑠

is 𝑡𝑤𝑐,𝑠 = 𝑡0 + 𝑑 (𝑐, 𝑠)/𝑣𝑤 , where 𝑣𝑤 is the walking speed and 𝑑 (𝑐, 𝑠)
is the distance between centroid 𝑐 and stop 𝑠 . We connect each

centroid 𝑐 with walk arcs to stoptimes within walk distance 𝜏 that

can be reached before the time of service:
𝑎 = (𝑐, 𝑣)𝑤 | 𝑙 ∈ L serves 𝑠, 𝑣 ∈ ST (𝑠, 𝑙),

𝑣 = argmin

𝑣′∈ST(𝑠,𝑙 ),𝑡𝑤𝑐,𝑠≤𝑡 (𝑣′ )
𝑡 (𝑣 ′), 𝑠 ∈ S, 𝑑 (𝑐, 𝑠) ≤ 𝜏

 ,

(3)

We compute arc weights as follows. The arcs defined in (2) have

weight 0. Arcs 𝑎 = (𝑐, 𝑣)𝑤 defined in (2) have weight𝑤 (𝑎) = 𝑡 (𝑣) −
𝑡0. Arcs 𝑎 = (𝑣, 𝑣𝑙 ′ ) defined in (1) have weight𝑤 (𝑎) = 𝑡 (𝑣𝑙 ′ ) − 𝑡 (𝑣).
2.3.2 Model of Demand-Responsive service. When deploying the

DRT feeder bus for stop 𝑠 ∈ SDRT
, such service spans a rectangular

area of size 𝐿 ×𝑊 on the right of stop 𝑠 , as in [10]. C(𝑠) is the set
of centroids within such an area. The DRT is cyclic: during each

cycle, a bus starts from 𝑠 , picks-up/drops-off passengers in/to the

area and returns to 𝑠 . It thus stops for 2 minutes before starting the

next cycle. A new bus departs every ℎ(𝑠) units of time (headway).

We apply the continuous approximation model of [7], of which

we give here only minimum information, for lack of space. The

expected time needed to complete a cycle is 𝑇 (𝑠), which depends

on the number of passengers departing from/arriving to the region.

We assume demand density 𝜌 (passengers willing to be picked-up

- we assume the same density of passengers to be dropped-off) is

uniform across the entire urban area. The higher 𝜌 , the higher the

detours imposed to the DRT, the higher 𝑇 (𝑠). On average, the time

needed to go from a centroid to stop 𝑠 via DRT is𝑇 (𝑠)/2. Therefore,
a passenger can arrive at stop 𝑠 at time 𝑡DRT𝑐,𝑠 = 𝑡0 +𝑇 (𝑠)/2. We thus

add the following DRT arcs:


𝑎 = (𝑐, 𝑣)DRT | 𝑙 ∈ L serves 𝑠, 𝑣 ∈ ST(𝑠, 𝑙 ),

𝑣 = argmin

𝑣′∈ST(𝑠,𝑙 ),𝑡DRT𝑐,𝑠 ≤𝑡 (𝑣′ )
𝑡 (𝑣′ ), 𝑠 ∈ SDRT, 𝑐 ∈ C(𝑠 )


As usual, the weight on such arcs 𝑎 = (𝑐, 𝑣)DRT are 𝑡 (𝑣) − 𝑡 (𝑐).

Imposing a certain headway ℎ requires to deploy a certain number

of vehicles𝑀ℎ (see [7] for the formula).

2.3.3 Shortest path. Note that after the construction explained

above, graph𝐺 models multimodal PT, as it includes both fixed PT

and DRT services. We can compute shortest path 𝑇 (𝑐, 𝑠) from any

centroid 𝑐 to any stop 𝑠 , using Dijkstra algorithm or others. In case

no path exist, we set 𝑇 (𝑐, 𝑠) = ∞. To compute accessibility (§2.1),

we use 𝑇 (𝑐, 𝑠) = min{𝑇 (𝑐, 𝑠), 𝑑 (𝑐, 𝑠)/𝑣𝑤}, i.e., we do not consider

PT paths that would be longer than walking.

2.4 Graph Database Model
To store and process transportation data, we leverage the leading

open-source Neo4j graph database. Its property graphmodel consists

of a labeled, directed multigraph, in which lists of properties (key-

value pairs) can be attached to both nodes and edges. For querying,

its Cypher language allows to extract label-constrained reachability

information encoding complex graph patterns [6]. The Neo4j Graph

Data Science (GDS) library contains efficient implementations of

common graph algorithms, useful for analytics.

We build our transportation graph model using GTFS data, a

standard open data format detailing transit schedules. Specifically,

we import the information corresponding to the Royan urban region

in Neo4j, as part of a custom graph instance we construct.

We model the urban transport network as a property graph

instance (see Figure 1). Centroid nodes (tessellation centroids)

are linked to Stoptime nodes, which represent scheduled passage

times and correspond to specific Stop nodes (stations), as indicated
by Located_at arcs. The arcs connecting a given Centroid and

Stoptime are labeled Walk and/or DRT, depending on the pedes-

trian and, respectively, demand-responsive accessibility. Stoptime
nodes are connected with Precedes-labeled arcs (temporal order-

ing) or with Correspondance-labeled arcs (correspondance, using

a different line, between a pair of stoptimes of the same stop) The

full graph instance amounts to 18892 nodes and 73714 relations

(arcs), additionally annotated with 16 different node properties and

6 different relation properties. Note that the node values in Figure

1-right correspond to the identifiers of the corresponding Stop (also
propagated to its stoptimes) or Centroid node.

For our analysis, we enrich the property graph instance with

accessibility information, stored using custom edge properties. We

illustrate an example of this with the Cypher query below, in which

we compute the shortest path between a given centroid and a stop.
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Figure 1: Left: Neo4j snapshot of a portion of Royan’s PT
graph instance; the node colors encode their label: green
(Centroid), red (Stoptime), and blue (Stop). Right: Detail.

This uses the built-in Dijkstra’s source-target shortest path algo-

rithm from Neo4j’s GDS library, weighted by the inter_time, rep-
resenting the walk time from a centroid to a station and the addi-

tional wait time at the station. The following example is a query

that computes the shortest path from centroid 𝑐 = 0 to stop 𝑠 = 607.

MATCH (s :Centroid) , ( t :Stop) WHERE s . centroid_id = 0 AND t . stop_id = '607'

CALL gds. shortestPath . dijkstra . stream (' graph ', {sourceNode: id (s ) ,

targetNode: id ( t ) , relationshipWeightProperty : ' inter_time '})

YIELD sourceNode, targetNode, totalCost , nodeIds, path

CALL apoc.algo . cover(nodeIds) YIELD rel

WITH startNode( rel ) AS a , endNode(rel) AS b, rel AS r ,

path AS p, totalCost AS tCost

RETURN p, a . stop_id AS from, b. stop_id AS to , r . inter_time AS inter_times ,

r .walking_time AS walking_time, r .waiting_time AS waiting_DRT,

r . travel_time AS DRT_time, tCost AS totaltime

3 NUMERICAL RESULTS
We showcase our approach on the French town of Royan, counting

749 PT bus stops.We select 20SDRT
stops to be served by DRT (bold

ones in Figure 2-left). The considered numerical values are in Table 1.

We measure the reduction in the inaccessibility of centroids when

introducing the DRT service, with headway ℎ = 4 min (resulting in

21.4 vehicles and 27.7 passengers per vehicle). We plot in Figure 2-

right the reduction of inaccessibility observed by the centroids in

C(𝑠),∀𝑠 ∈ S𝐷𝑅𝑇
: only some centroids benefit from DRT, which

suggests that it is of capital importance to solve the assignment

problem (Def. 2.1) to not waste resources with no benefits.

In Figure 3-left, we plot the reduction of inaccessibility against

Δ(𝑐), the increase of DRT usage for each centroid 𝑐 . Δ(𝑐) is the
amount of potential destinations for which the shortest path uses

DRT, when available. As expected, the more Δ(𝑐), the more inac-

cessibility is reduced.

Some features of stops 𝑠 ∈ SDRT
may suggest where benefit

from introducing DRT can be expected to be higher. In Figure 3-

right, we analyze the proximity, i.e., the number of other stops

within a distance of 5km from 𝑠 . We observe that the benefits of

introducing DRT are, as expected, more pronounced when DRT

serves PT stops that are close enough to other stops. In such cases

indeed, passengers can arrive more easily to 𝑠 and from 𝑠 they can

reach more potential destinations. Such consideration may help

construct efficient heuristics to solve the assignment problem.

s

Figure 2: Left: stops S (in bold SDRT). Right: reduction
in inaccessibility (log), when introducing the DRT service;
inequalityno DRT = 0.3446, inequalitywith DRT = 0.3443 (§2.1).

Figure 3: Left: Relation between DRT usage (log) and inac-
cessibility reduction. Right: Relation between proximity and
inaccessibility reduction (log). Centroids are partitioned in
bins based on the x-axis, whose intervals are specified in the
x-tics. Bars represent the average across centroids on each
bin and standard deviation.

4 CONCLUSION AND FUTUREWORK
In this work, we set the bases of a computational approach to quan-

tifying the impact that deploying DRT services, in a real network,

has on the accessibility distribution. We show that optimally de-

ploying DRT vehicles to this aim is NP-complete. The current work

has three main limitations that we are currently addressing to make

it usable for planners. First, we assume that PT demand is inelas-

tic, as we keep demand density 𝜌 constant, while in reality the

passengers choosing DRT depend on its performance that, in turn,

depends on the number of passengers. To solve this circular depen-

dency, we are currently working on solving a Traffic Assignment

Problem (TAP). Second, we are currently including in our model

opportunities, i.e., shops, jobs, schools, etc., which can be retrieved

fromOpenStreetMap points of interest. Wewill then compute acces-

sibility as the ease of reaching such opportunities, in accordance to

the literature [8], instead of considering the “potential destinations”

D(𝑐) (Table 1). Third, we need to repeat our analysis in cities of

different sizes to assess its scalability.
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