
Efficient On-Street Parking Sensor Placement
Lukas Rottkamp

LMU Munich
Munich, Germany

lukas.rottkamp@campus.lmu.de

Matthias Schubert
LMU Munich

Munich, Germany
schubert@dbs.ifi.lmu.de

Niklas Strauß
LMU Munich

Munich, Germany
strauss@dbs.ifi.lmu.de

ABSTRACT
When placing sensors in an environment, it may not be possible
to directly cover all entities of interest with sensors due to cost
or other restraints. This leads to a sensor placement problem in
which only a subset of all sensible sensor locations is equipped with
sensors. If data concerning the system to be measured is already
available or easily procured, sensor locations can be selected in a
data-driven approach. Without data, alternative methods have to be
applied. In this paper, we present and compare various data-driven
and data-agnostic methods for selecting parking sensor locations in
a city environment. Experiments using real-world data show that
methods only requiring parking bays’ locations compare reasonable
well to data-driven approaches requiring environment data which
may be expensive to acquire.

CCS CONCEPTS
• Applied computing→ Transportation; Forecasting; • Infor-
mation systems → Spatial-temporal systems; • Computing
methodologies→ Model development and analysis.

KEYWORDS
sensor placement, smart city, parking
ACM Reference Format:
Lukas Rottkamp, Matthias Schubert, and Niklas Strauß. 2022. Efficient On-
Street Parking Sensor Placement. In The 15th ACM SIGSPATIAL International
Workshop on Computational Transportation Science (IWCTS ’22), November
1, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3557991.3567796

1 INTRODUCTION
Accurate data is important when making statements regarding the
current or future state of a system such as an urban environment.
Such data can be automatically recorded by sensors and processed
according to the needs of relevant use-cases. For example, the City
of Melbourne, Australia, fitted individual parking bays in its Central
Business District with in-ground occupancy sensors to obtain real-
time parking occupancy information. This naturally comes with
costs for planning, installation and maintenance. Secondary factors
such as obtaining necessary permits, privacy concerns, property
restrictions or similar issues may complicate the installation of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IWCTS ’22, November 1, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9539-7/22/11. . . $15.00
https://doi.org/10.1145/3557991.3567796

complete sensor network. Consequently, outfitting only a subset
of possible sensor locations with sensors may be preferred or even
required. This comes with the disadvantage of having blind spots
which needs to be addressed in order to still be able to feed suitable
data to smart city applications. Although methods for filling gaps
exist, they come with an error due to the inherent uncertainty
caused by the environment’s dynamic behavior, e.g. visitors or
commuters parking their cars. In order to enable a good service
quality, data providers seek to minimize such errors.

Selecting a subset of possible sensors can be done in a data-
driven way by obtaining data from a particular environment and
then, using this data to calculate optimal sensor positions. In the
parking use case, this could be done by conducting a study in which
parking occupancy is recorded by human observers during a short
time-frame. As this also comes with drawbacks such as personnel
costs and an increased project duration and complexity, strategies
not requiring such data may be beneficial if their results are not
much worse than data-driven methods. It is important to note that
such strategies do not have to work completely without data: Data
regarding the environment is usually available, such as a map of
the street network including parking bays.

In this paper, we review data-driven and data-agnostic methods
relevant for placing sensors in order to interpolate parking occu-
pancy data. We state methods not needing initial occupancy data
but only a street network graph including parking bay locations.
We then evaluate various methods using real-world parking data
and conclude that our method is a viable alternative when obtaining
initial occupancy data is not possible or expensive.

2 RELATEDWORK
Using information obtained through spatial sensor networks is
a common theme in smart city applications. For example, it was
shown that information about the current occupancy state of park-
ing bays can be used to guide drivers to a free parking bay faster
than approaches without such data [15]. Future parking occupancy
can be predicted given data of sensor networks [2]. Methods for
monitoring parking availability include in-ground sensor networks
[19] and analysis of camera footage [16]. A comprehensive overview
of parking bay sensors and use-cases making use of parking data
is given in [6]. In case not every parking opportunity is directly
covered by sensors, interpolation methods can be used to estimate
parking occupancy at unobserved locations [3].

Approaches using stationary sensors described above assume
an already specified and fixed sensor network, either by outfit-
ting each parking bay in the target area with a sensor or making
use of an existing sensor infrastructure. In contrast, this paper is
concerned with selecting a limited number of street segments for
sensor placement.

64

https://orcid.org/0000-0002-9968-2499
https://orcid.org/0000-0002-6566-6343
https://orcid.org/0000-0002-8083-7323
https://doi.org/10.1145/3557991.3567796
https://doi.org/10.1145/3557991.3567796
https://doi.org/10.1145/3557991.3567796

Efficient On-Street Parking Sensor Placement IWCTS ’22, November 1, 2022, Seattle, WA, USA

Basic approaches for selecting a subset of possible sensor loca-
tions for sensor placement in a spatial environment include spread-
ing the sensors randomly or uniformly over the area in question, e.g.
by drawing a suitable grid and placing sensors near grid intersec-
tions. A more sophisticated method is to solve a coverage problem
requiring that all areas or entities of interest are covered by at least
one sensor, i.e., are within its detection range. This problem can be
formalized as an optimization objective given coverage constraints
and efficiently be solved using integer linear programming solvers.
For example, [1] use a coverage approach to optimize placement
of data relay nodes given a fixed set of parking sensors. Finding
an exact solution may be computationally infeasible if the set of
possible sensor combinations is large. In this case, heuristics such
as simulated annealing or genetic algorithms can be applied [14].

Data-driven approaches need data of the type sensors would
yield before the actual sensor placement is decided. These data
may be collected by temporary sensors or a field study (e.g. per-
sonnel placed on streets with notepads). In some cases, it may be
inferred from other data, although this adds another layer of un-
certainty. Outfitting only a subset of possible sensor locations with
sensors is known as the sparse sensor placement optimization for
reconstruction (SSPOR) problem [11]. While work on SSPOR often
uses spatial examples such as temperature interpolation, methods
do not explicitly include spatial information. Instead sensors are
placed only using sensor data. The PySensors toolkit for sensor
placement presented by [4] contains algorithms to solve SSPOR:
It takes a set of complete measurements and determines which
components should be selected to reconstruct the remaining ones
in an optimal way. The same problem is solved by Polire, an open
source toolkit for spatial interpolation and sensor placement [9, 13].
It applies a greedy algorithm which selects sensors according to
gains in a specified criterion, such as mutual information or en-
tropy. The Chama framework for sensor placement covers many
relevant algorithms and strategies for sensor placement but focuses
on global event detection such as detecting an earthquake or a
pollutant leaking into a system [7]. We on the other hand are not
interested in detecting global events but detecting a multitude of
individual parking events. [8] determine how a fixed budget may
be best spent on individual observations when each observation
is connected with a certain cost. They do not determine a fixed
subset of sensors but determine which locations should best be
queried at which time. In contrast, we are interested in determining
a permanent network of stationary sensors.

3 PROBLEM DEFINITION
A spatial sensor selection problem includes entities of which state
information should be collected by sensors. Multiple problem defi-
nitions are possible depending on the nature of this entity. In our
definition, we consider 𝑛 discrete entities 𝑝𝑖 , e.g. each being the
set of individual parking bays of a given street segment. This cov-
ers the use-case of recording on-street parking availability with
in-ground devices as the infrastructure needed for a street segment
(such as a relay node processing raw data of individual sensors and
transmitting occupancy data to a central database) can be use by
multiple sensors connected by wires or near-field communication
[1]. In this case, we call the combined set of devices monitoring

exactly one street segment a sensor. It also covers the use-case of
recording such data by analyzing camera images, as a camera can
typically be installed in a way that covers all parking bays of a
street segment, but not multiple street segments at once.

Note that in our definition, a street segment never contains an
intersection. Further, the link between two intersections is divided
intomultiple street segments if it would otherwise contain toomany
parking bays. We call a street segment connected to an entity a
candidate segment as it is a candidate for sensor placement. Sensors
are never placed on street segments that are not candidate segments.

Each entity is connected to a measurable value 𝑣𝑖,𝑡 (0 ≤ 𝑣𝑖,𝑡 ≤ 1)
for each time 𝑡 , e.g. the fraction of occupied parking bays at time 𝑡 .
The spatial relation of 𝑝𝑖 is given as their location in a graph𝐺 with
nodes 𝑁 and edges 𝐸. Each 𝑝𝑖 is connected to an edge 𝑒𝑖 ∈ 𝐸, e.g. a
street segment. Each node carries location information in form of
Cartesian coordinates. Therefore, each entity 𝑝𝑖 can be assigned a
location 𝑙𝑖 that is defined as the midpoint between both nodes of
its edge 𝑒𝑖 .

As stated above, each entity 𝑝𝑖 is monitored by exactly one sensor.
Sensor presence is indicated by an indicator variable 𝑠𝑖 ∈ {0, 1}
which is set to 1 if a sensor is present at 𝑝𝑖 , otherwise 0. Each of𝑚
sensors placed covers exactly one entity, i.e.

∑
1≤𝑖≤𝑛 𝑠𝑖 =𝑚.

The sensor selection problem now selects the set of entities �̂� to
be equipped with a sensor that maximizes an objective function _
over all valid sensor subsets 𝜎𝑘 ∈ Ω:

�̂� = argmax
𝜎𝑘 ∈Ω

_(𝜎𝑘) (1)

with
Ω = {(𝑠1, ..., 𝑠𝑛)∀𝑠𝑖 ∈ {0, 1}},

∑
1≤𝑖≤𝑛

𝑠𝑖 =𝑚 (2)

Reasonable functions for _ include averaged interpolation or
prediction errors when using the subset to reconstruct actual values
𝑣𝑖,𝑡 . Assuming a predictor Γ(𝜎, 𝑖) taking a subset of sensors to
predict the value of the 𝑖-th sensor, the mean absolute error (MAE)
may be used:

_MAE (𝜎) =
∑

0≤𝑖≤𝑛,∀𝑡
|𝑣𝑖,𝑡 − Γ(𝜎, 𝑖) | (3)

Note that the best subset depends on both predictor Γ and objec-
tive function _. These have to be chosen according to the use-case.

4 SENSOR PLACEMENT METHODS
Various methods for sensor placement are mentioned in Section 2
above. These include data-driven and data-agnostic approaches.
Data-driven approaches use observation data for placement of sen-
sors. In our parking use-case, this is parking occupancy data. Data-
agnostic methods don’t use such data but may usemetadata such as
locations of candidate segments and the street graph. Some meth-
ods are deterministic while others involve random components
such as random initialization or random tie-breaks. Each method
is given a input parameter𝑚 denoting the exact size of the target
subset of candidate segments to select for sensor placement, i.e. the
number of sensors to place.

We now describe a number of methods which are relevant for
our parking use-case and included in our evaluation.

65

IWCTS ’22, November 1, 2022, Seattle, WA, USA Lukas Rottkamp, Matthias Schubert, and Niklas Strauß

4.1 Data-agnostic placement methods
Simple placement methods Random and Largest are included as
benchmark methods for comparison. We devised methods Clusters
and MaxMin to exploit the observation that pairwise correlation
between spatial resources depends on the distance between them:
A smaller distance tends to coincide with higher similarity. This
may be due to their shared neighborhood with points of interest
targeted by drivers. Other reasons may include differing parking
rules or peculiarities of the street network such as dead-end streets
or especially busy areas. While we are certainly not the first to
use the underlying algorithms, we are not aware of other attempts
of using them in related problem settings. Method Coverage is
included for comparison as coverage-based methods are routinely
used for sensor placement [1, 18]. Note that we don’t use it in the
“traditional” way of optimizing direct sensor coverage as explained
below.

4.1.1 Random. Candidate segments are selected for sensor place-
ment by random draw. Each segment has the same probability of
being drawn.

4.1.2 Largest. Candidate segments are selected only by their re-
spective number of individual parking bays contained. Segments
with higher counts are selected first. This method is explicitly in-
cluded as a “higher-bound” benchmark as we have no reason to
believe that it leads to advantageous selections.

4.1.3 Clusters. This method is shown in Algorithm 1: To select
𝑛 sensors, segments are first clustered into 𝑛 clusters through K-
Means clustering using Lloyd’s algorithm [10]. Each cluster’s center
point is calculated as the mean location of all candidate segments it
contains. The nearest not previously selected candidate segment to
each center point is determined and selected for sensor placement.
Note that the algorithm uses locations given in a local Cartesian
coordinate system. Locations denoted in geographic coordinates
are projected to a suitable local Cartesian coordinate system first.
The method is not deterministic as results of Lloyd’s algorithm
depend on its random initialization and ties in distance are resolved
randomly.

4.1.4 MaxMin. This method selects candidate segments so that
the minimum pairwise graph distance over all selected sensors
is maximized. This effectively spreads the sensors as widely as
possible while preventing sensors to be near to each other. The
large number of possible subsets prevents us from obtaining an
optimal solution due to the high computational complexity. Instead,
we use a greedy heuristic shown in Algorithm 2. We restart this
algorithms multiple times, always keeping the best result seen so
far, to minimize the risk of ending up in local optimum worse than
the global optimum.

4.1.5 Coverage. This method also exploits the spatial relationship
of parking segments. Here, a candidate segment is defined to be cov-
ered if at least one sensor is present within a certain graph distance
𝑑 . Note that “coverage” in this sense does not refer to direct cover-
age through actual observance by the sensor but indirect coverage
due to a statistically higher likeness of occupancy because of spatial
closeness. The method places 𝑚 sensors so that 𝑑 is minimized
under the constraint that each candidate segment is covered.

Data: 𝑃 ⊲ Set of all possible sensor locations
Data: 𝑘 ≥ 1 ⊲ Amount of sensors to select
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟𝑠 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐾𝑀𝑒𝑎𝑛𝑠 (𝑃, 𝑘);
𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ← {};
foreach 𝑐𝑒𝑛𝑡𝑒𝑟 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟𝑠 do

𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ← inf ;
foreach 𝑐 ∈ 𝑃 \ 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 do

𝑑 ← 𝑑𝑖𝑠𝑡 (𝑐𝑒𝑛𝑡𝑒𝑟, 𝑐);
if 𝑑 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 then

𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ← 𝑑 ;
𝑏𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑐;

end
end
𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ← 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ∪ {𝑏𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒};

end
return 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ;

Algorithm 1: Part of selection method Clusters.

Data: 𝑃 ⊲ Set of all possible sensor locations
Data: 𝑘 ≥ 1 ⊲ Amount of sensors to select
𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ← 𝑝𝑖𝑐𝑘𝑂𝑛𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 (𝑠𝑢𝑏𝑠𝑒𝑡𝑠𝑂 𝑓 𝑆𝑖𝑧𝑒 (𝑃, 𝑘));
𝑚𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑠𝑡 ←𝑚𝑖𝑛𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐷𝑖𝑠𝑡 (𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡);
repeat

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒;
𝑆 ← 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ;
foreach 𝑇 ∈ 𝑠𝑢𝑏𝑠𝑒𝑡𝑠𝑂 𝑓 𝑆𝑖𝑧𝑒 (𝑆, 𝑘 − 1) do

foreach 𝑐 ∈ 𝑃 \ 𝑆 do
𝑈 ← 𝑇 ∪ {𝑐};
𝑑 ←𝑚𝑖𝑛𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐷𝑖𝑠𝑡 (𝑈);
if 𝑑 > 𝑚𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑠𝑡 then

𝑚𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑠𝑡 ← 𝑑 ;
𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ← 𝑈 ;
𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑇𝑟𝑢𝑒;

end
end

end
until not 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ;
return 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ;

Algorithm 2: Part of selection method MaxMin.

This can efficiently be done by pre-computing solutions to the
the set-cover problem [12] for a each distance 𝑑 in a suitable range.
Each solution of the set-cover problem is a minimal set of sensors
so that each candidate segment is covered assuming a sensor range
of 𝑑 . An optimal set of 𝑚 sensors can then be looked up in the
pre-computed solution list by selecting the solution with lowest
distance under the condition that𝑚 sensors are selected.

Minimal set sizes for our evaluation environment Melbourne are
shown in Figure 1. For example, the installation of 50 sensors can
be done in a way so that no parking segment is more than about
300 meters away from a sensor.

66

Efficient On-Street Parking Sensor Placement IWCTS ’22, November 1, 2022, Seattle, WA, USA

0 300 600 900 1200 1500 1800 2100 2400 2700

Distance in meters

0

50

100

150

N
um

be
ro

fs
en

so
rs

Figure 1: Minimum amount of sensors needed to cover all
parking segments for various coverage distances in our eval-
uation environment.

4.2 Data-driven placement methods
Data-driven approaches are given observation data of all candidate
segments. This means they can effectively select the best sensor sets
in hindsight. They are connected to higher costs in real-world appli-
cations in case such data needs to be obtained first. The following
methods are included:

4.2.1 MinError. This method places sensors in a way that min-
imizes the evaluation metric given occupancy data. Because the
computational complexity prevents us from finding the optimal
solution for larger experiments such as ours, we implemented a
greedy search heuristic: Starting with an empty set, sensors are
added one-by-one until the targeted number of sensors is reached.
The sensors added in each step is the one which, compared to all
other remaining candidates, leads to the smallest total error. While
this heuristic only approximates the optimal selection, it produces
results very close to the optimal solution in smaller experiments
and we are confident it is a good benchmark method.

4.2.2 PySensors. The PySensors [4] framework is included using
the original implementation1. It includes three choices of basis
functions, Identity, SVD and Random, each requiring parameters.
For our evaluation, we determined the best basis and parameters
experimentally in preliminary experiments. It should be noted that
PySensors makes no use of segments’ locations nor the street graph
but is a pure data-driven selection method working on occupancy
data.

4.2.3 Polire. Like PySensors, the Polire framework [13] does not
consider location information but only the supplied occupancy time
series. We include it in our evaluation via the original implemen-
tation2. Users can choose between stationary or non-stationary
models, different kernels and parameters. Those were again deter-
mined beforehand in preliminary experiments.

5 INTERPOLATION METHODS
Having selected a subset of segments for sensor placement, predic-
tor Γ (see Section 3) infers the states of remaining parking segments
from data obtained through those sensors. We use spatial interpo-
lation techniques for this task as parking bays are spatially related.
Two interpolation methods are used in our evaluation:

1https://github.com/dynamicslab/pysensors
2https://github.com/sustainability-lab/polire/blob/SenSys20_Poster/polire/
placement/base/base.py

The KNN (k nearest neighbors) method as shown in Equation 4
is employed to calculate parking availability 𝐴 at location 𝑥 given
the set 𝑅𝑘 of the 𝑘 nearest parking bays and their respective avail-
ability values𝐴𝑖 measured by sensors. In our evaluation, we set the
parameter 𝑘 to 5 as this value gave lowest interpolation errors in
preliminary experiments.

𝐴(𝑥) =
∑
𝑖∈𝑅𝑘 𝐴𝑖
𝑘

(4)

We also include the IDW (inverse distance weighting) method
[17] shown in Equation 5. Here, availability 𝐴 at location 𝑥 is calcu-
lated by a weighted average over all available sensor values𝐴𝑖 . The
weights𝑤𝑖 (𝑥) depend on the distance between location and sensor
raised to the power of 𝛼 . We set 𝛼 to 2 as preliminary experiments
gave good interpolation performance using this value.

𝐴(𝑥) =
∑
𝑖∈𝑅 𝑤𝑖 (𝑥)𝐴𝑖∑
𝑖∈𝑅 𝑤𝑖 (𝑥)

,𝑤𝑖 (𝑥) =
1

𝑑 (𝑥, 𝑥𝑖)𝛼
(5)

According to [3], IDW is well-suited for estimating parking
availability given a limited number of sensors. This method seems
especially beneficial as the information given by a sensor in spatial
settings like ours is expected to statistically decrease with distance.

6 EVALUATION
Evaluation follows the two-step process described in Section 3.
First, a subset of parking segments is selected according to the
respective sensor placement method. Occupancy values are then
“virtually” measured by those sensors according to ground truth
data. These values are then used to obtain all remaining parking
segments’ occupancy values using an interpolation method. Finally,
the interpolation error is calculated using ground truth data. Non-
deterministic methods were evaluated multiple (7) times to reduce
influence of random effects.

Two experiments have been conducted to gain insights into
the performance of methods: The first scenario assumes complete
availability of observation data. This enables us to evaluate mod-
els’ best-case performance and gain insights in the general task of
interpolating parking occupancy. A low error in this scenario is
however not alone representative of a method’s real-world capa-
bility as there is no need to place sensors if all data is be available
anyway. The interpolation error on previously unseen data is also a
crucial metric. Therefore, we include a second scenario which only
presents a fraction of data to selection algorithms. In practice, this
data may be acquired through a field study. Interpolation errors
are then calculated over a test set consisting of a time span not
included in the initial training data.

6.1 Evaluation dataset
Real-world parking occupancy ground truth data for our evaluation
is taken from the City of Melbourne, Australia, open data platform3.
This platform provides the dataset On-street Parking Bays4 con-
taining locations of on-street parking bays in the Central Business

3City of Melbourne open data platform: https://data.melbourne.vic.gov.au;
Data licensed under Creative Commons Attribution 3.0 Australia:
https://creativecommons.org/licenses/by/3.0/au/
4https://data.melbourne.vic.gov.au/Transport-Movement/On-street-Parking-
Bays/crvt-b4kt

67

https://github.com/dynamicslab/pysensors
https://github.com/sustainability-lab/polire/blob/SenSys20_Poster/polire/placement/base/base.py
https://github.com/sustainability-lab/polire/blob/SenSys20_Poster/polire/placement/base/base.py

IWCTS ’22, November 1, 2022, Seattle, WA, USA Lukas Rottkamp, Matthias Schubert, and Niklas Strauß

Figure 2: On-Street parking segments used for evaluation.

0 20 40 60

0

25

50

Original distribution

0 20 40 60

0

50

After merging large segments

Figure 3: Histogram of parking segment sizes before and af-
ter processing.

District of Melbourne. We connected these parking bays to a street
graph obtained through OpenStreetMap5. Parking bays for loading
only and bays requiring special permissions were removed.

Individual on-street parking occupancy data of the same parking
bays is available in datasetOn-street Car Parking Sensor Data - 20176.
In this dataset, arrivals and departures of vehicles are recorded to
the second. We resampled the occupancy into 5-minute time slots,
each of which represents a state of the overall parking situation.
Individual parking bays were then aggregated according to their
street segments, a street segment being defined a segment of a street
between two intersections. Segments with more than 30 parking
bays were split into multiple smaller ones then amounting to sizes
of between 15 and 20 bays. This was done as exceptionally large
segments (usually caused by a street with few intersections) may
not be covered by a single sensor such as a camera sensor. The
resulting parking segment size histogram is presented in Figure 3.
After processing, we obtain 189 parking street segments.

The following datasets were included for evaluation:

5https://www.openstreetmap.org
6https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-
2017/u9sa-j86i

0.00 0.25 0.50 0.75 1.00

0.0

0.2

Original distribution

0.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10

After artificial increase

Figure 4: Distribution of parking bays having at least one
free bay, before and after artificial increase.

6.1.1 Regression. This dataset contains each parking street seg-
ment’s occupancy for each 5-minute time slot. These values are
calculated as average occupancy values over all individual park-
ing bays of respective segments, giving a numeric target variable
between 0 and 1.

6.1.2 ThreeBins. This dataset represents a classification problem
as numeric values of dataset Regression are sorted into the three
bins low occupancy, medium occupancy and high occupancy. It is
motivated by existing parking occupancy tools indicating estimated
availability using traffic light colors. This is easier to communicate
to end users than numeric values. Further, numeric values may
suggest a sense of accuracy that may be difficult to achieve when
predicting parking accuracy. On the other hand, a more coarse
classification such as this one is satisfactory for a user looking for
parking opportunities.

6.1.3 OneFreeHigh. In this dataset, the target variable is binary
and states if at least one individual parking bay of the parking
street segment in question is free at a given point in time. This
is motivated by the fact that in practice, drivers searching for a
parking opportunity in their immediate surroundings are primarily
interested in streets containing at least one free parking bay. It
should be noted that according to the Melbourne in-ground sensor
data, most parking segments contain at least one free parking bay
at a given time. Naturally, a parking information system is most
appreciated when finding a free parking opportunity presents a
challenge to motorists, i.e. when parking opportunities are rare.
To evaluate the various methods in such a setting, we artificially
increased the parking occupancy of all parking bays so that only
about every second parking segment contains at least one free
parking bay. This means an increase of parking demand by 38%.
A comparison of the resulting increased occupancy distribution
versus original occupancy distribution is shown in Figure 4.

6.2 Experiment 1: Training on complete data
Experiment 1 covers six months, from June to November 2017. Data-
driven methods will receive the complete ground-truth occupancy
data. As described above, this is unrealistic in practice but yields
insights about the best-case performance of placement methods.
No-data methods make no use of occupancy data.

Each selection method is executed multiple times: The respective
number of sensors to select increases from only one sensor to 171
sensors (out of 189 possible sensors). Interpolation errors for each
method and parameter are then calculated as described above.

68

Efficient On-Street Parking Sensor Placement IWCTS ’22, November 1, 2022, Seattle, WA, USA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of segments being outfitted with sensors

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
A

E

Random
Clusters
Largest
MaxMin
Coverage
MinError
PySensors
Polire

Figure 5: Mean absolute interpolation errors (over all park-
ing segments) by size of sensor subset on Regression dataset.
Each line represents a selection method.

6.2.1 Comparing results for different methods. The mean abso-
lute IDW interpolation errors of evaluated methods given varying
numbers of segments to select are shown in Figure 5. For non-
deterministic methods, multiple repetitions were run whose er-
rors are averaged. Not surprisingly, errors decrease with growing
amount of sensors. Our “lower-bound” benchmark method Min-
Error clearly produces the smallest error as expected given its direct
optimization of the IDW error. Other methods are not easily distin-
guished in this overview.

For a better evaluation, it is appropriate to exclude candidate
segments fitted with sensors from evaluation, as these naturally
show no error. We will focus on these error values in the remainder.
The are shown in Figure 6a for the Regression dataset. Our earlier
observations appear in more detail. Method Polire shows second-
best performance while Random appears to be average. Errors for
datasets ThreeBins and OneFreeHigh are shown in Figure 6a and
Figure 6c, respectively. The ranking of methods is similar to the
one observed for the Regression dataset. A notable exception is
the error curve of method Clusters when evaluated using dataset
OneFreeHigh: It is now intersecting with Polire multiple times. This
is especially remarkable given their different nature, as Clusters
does not need occupancy data but only parking bays’ locations.

A condensed comparison of errors is shown in Table 1. Relative
errors compared to MinError, the best method for each dataset, are
included. MinError being the overall best method is not surprising
as it by design directly optimizes the evaluation metric. Second-best
is Polire, also requiring complete data. Method Clusters reaches third
place even though it doesn’t use occupancy data. Sensors selected
by method PySensors produces slightly higher errors than some
data-agnostic methods. It can be seen that methods’ ranks are often
equal for both interpolation methods. Selection method Random
ranks in the bottom half of results. However, error differences
are relatively small in some cases. We attribute this to the fact
that random placement tends to cover the whole area which is
beneficial for interpolation as spatial resources such as parking
bays are typically locally correlated. Further, if random placement
considers not just an area but the set of possible sensor locations

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of segments being outfitted with sensors

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

M
A

E

(a) Error using Regression dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of segments being outfitted with sensors

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

M
A

E

(b) Error using ThreeBins dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of segments being outfitted with sensors

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
A

E

(c) Error using OneFreeHigh dataset.

Figure 6: Mean absolute interpolation errors (only unse-
lected parking segments) by size of sensor subset. Each line
represents a selection method (color definition in Figure 5).

as in the setting of this paper, it implicitly draws from a density
distribution of entities to be measured, potentially reducing the
interpolation error even more.

69

IWCTS ’22, November 1, 2022, Seattle, WA, USA Lukas Rottkamp, Matthias Schubert, and Niklas Strauß

Method Regression ThreeBins OneFreeHigh Mean
MinError .161 (+0%) .207 (+0%) .327 (+0%) +0.0%
Polire .193 (+19%) .239 (+15%) .377 (+15%) +16.9%
Clusters* .196 (+21%) .240 (+16%) .384 (+17%) +18.4%
MaxMin* .192 (+18%) .241 (+16%) .398 (+21%) +19.0%
PySensors .194 (+20%) .244 (+18%) .407 (+24%) +21.1%
Random* .197 (+21%) .247 (+19%) .404 (+23%) +21.8%
Coverage* .202 (+25%) .247 (+19%) .396 (+20%) +21.9%
Largest* .203 (+25%) .249 (+20%) .408 (+24%) +23.7%

Table 1: Mean IDW interpolation MAE values of selection
methods over all subset sizes. Relative difference to best in
column is shown in brackets, with mean in right column.
Methods not using parking data are marked with asterisks.

Method Regression ThreeBins OneFreeHigh Mean
MinError .174 (+0%) .226 (+0%) .384 (+0%) +0.0%
Polire .198 (+13%) .246 (+8%) .404 (+5%) +9.3%
Clusters* .194 (+11%) .246 (+8%) .414 (+7%) +9.3%
Coverage* .194 (+11%) .244 (+7%) .421 (+9%) +9.6%
MaxMin* .194 (+11%) .247 (+9%) .424 (+10%) +10.2%
PySensors .197 (+13%) .251 (+10%) .429 (+11%) +11.8%
Random* .199 (+14%) .252 (+11%) .428 (+11%) +12.3%
Largest* .205 (+17%) .254 (+12%) .429 (+11%) +13.8%

Table 2: Mean KNN interpolation MAE values of selection
methods over all subset sizes. Relative difference to best in
column is shown in brackets, with mean in right column.
Methods not using parking data are marked with asterisks.

Method Regression ThreeBins OneFreeHigh
IDW .196 .244 .398
KNN .197 .249 .423

Table 3: Mean interpolation errors of interpolationmethods
IDW and KNN for evaluated datasets.

6.2.2 Comparison of interpolation methods. Table 2 shows results
for KNN interpolation errors in contrast to the IDW interpolation
errors discussed above. Method MinError’s error is much higher
than before, lowering the relative difference to other methods. This
is expected as MinError directly minimizes the IDW error but now
interpolation uses the KNN method. The ranking of methods is
almost the same as before, suggesting that IDW and KNN produce
similar estimates.

Aggregated values for interpolation methods are shown in Ta-
ble 3. Note that these exclude methodMinError due to its minimiza-
tion of IDW error as this would skew results towards IDW. Still it
can be seen that IDW interpolation yields slightly better overall
results. This is not surprising as IDW weights nearer sensor values
higher than those farther away which exploits the environment’s
spatial correlation motivated above. Still differences are very small.

Method Regression ThreeBins OneFreeHigh
Random .0093 .0102 .0101
Clusters .0015 .0021 .0041
PySensors .0041 .0047 .0101

Table 4: Mean standard deviation of error for evaluated
methods and datasets. For each evaluated subset size, the
standard deviation was calculated over all repetitions. Av-
erages over all subset sizes are shown here.

10−4 10−3 10−2 10−1 100 101 102 103

Coverage
MaxMin

Polire
MinError
Clusters

PySensors
Random

Figure 7: Mean CPU time (in seconds) per selection run dur-
ing Experiment 1.

6.2.3 Variance analysis. Methods Random, Clusters and PySensors
are non-deterministic as they contain random choices at some point.
To average out random effects, evaluation results discussed above
have been averaged over a number of runs. It is important to also
analyze the errors’ variance as a high variance method may lead to
disappointing results when applied in a real-world setting without
ground-truth data. Consistently high variance would also ques-
tion the reliability of the evaluation procedure itself. The mean
standard deviation of individual methods is shown in Table 4: Re-
sults are low compared to the absolute errors in Table 1. Values for
method Clusters are significantly smaller than those of method Ran-
dom, indicating a stable clustering. The error variability of method
PySensors is caused by its use of randomized SVD solver [5]. Its
magnitude is again small compared to absolute error values. Over-
all, the low variance increases confidence in the applicability of
evaluated methods.

6.2.4 Comparison of selection time. Figure 7 shows the CPU time
needed per selection run during evaluation using an Intel® Core™
i7-10750H CPU. This comparison should be taken with a grain of
salt as implementations of methods are not primarily optimized for
best performance. Still the range over multiple orders of magnitude
is something to consider when applying methods in larger envi-
ronments than ours. Generally, the runtime of selection methods
is of lesser importance as they are only run during the planning
phase before sensors are being installed. For interpolation between
measurements of installed sensors, fast implementations of IDW
and KNN methods exist.

6.3 Experiment 2: Limited training set
This experiment covers the scenario of conducting a field study
to obtain data for data-driven placement methods. As Melbourne
ground truth data is readily available in the datasets described
above, we conduct a “virtual” field study by extracting a time span

70

Efficient On-Street Parking Sensor Placement IWCTS ’22, November 1, 2022, Seattle, WA, USA

Method Regression ThreeBins OneFreeHigh Mean
MinError .165 (+0%) .213 (+0%) .333 (+0%) +0.0%
Polire .191 (+15%) .234 (+9%) .379 (+13%) +13.1%
Clusters* .195 (+18%) .239 (+12%) .385 (+15%) +15.4%
MaxMin* .190 (+15%) .240 (+12%) .399 (+19%) +16.1%
PySensors .194 (+17%) .242 (+13%) .407 (+22%) +17.9%
Random* .195 (+18%) .246 (+15%) .405 (+21%) +18.4%
Coverage* .201 (+21%) .246 (+15%) .397 (+19%) +18.8%
Largest* .201 (+22%) .249 (+16%) .409 (+22%) +20.6%

Table 5: Experiment 2: Mean IDW interpolation MAE val-
ues of selection methods over all subset sizes. Relative dif-
ference to best in column is shown in brackets, with mean
in right column.Methods not using parking data aremarked
with asterisks.

Method Regression ThreeBins OneFreeHigh
MinError 3.240% 7.092% 4.731%
Polire 0.623% 0.996% 0.034%
PySensors 0.097% 1.210% 0.886%

Table 6: Mean IDW-interpolationMAE increases from train-
ing to testing error of selectionmethods over all subset sizes.

of training data from these datasets. We chose a span of four consec-
utive weeks for training as shorter spans resulted in large training
set error variability due to the limited number of samples. A second
extract of the following four months is then used as test data on
which sensor selections are evaluated.

6.3.1 Comparing results for different methods. A comparison of
test errors for evaluated placement methods can be seen in Table 5.
They closely resemble the results of Experiment 1 shown in Table 1.
This is no surprise for data-agnostic methods as their selections do
not depend on the training data and all test data of Experiment 2 is
also included in Experiment 1. Data-driven methods on the other
hand are now working on substantially reduced training data (four
weeks instead of six month during Experiment 1) which however
did not effect their performance. This indicates that four weeks of
training data are sufficient for data-driven selection methods.

6.3.2 Comparing training and testing errors. Table 6 shows relative
increases of errors when comparing test dataset errors with training
errors. Method MinMax shows largest increases, probably due to
overfitting as it directly optimizes the error metric during training.
Methods Polire and PySensors show smaller deviations. This may
indicate that they internally created more robust models which
generalize better than the aggressive method ofMinMax. Generally,
the moderate increase indicates that good selections during training
are still good during later time spans. This is an important insight
as it confirms our initial proposition that placing sensors at only a
subset of parking street segments is a viable strategy.

7 CONCLUSION
In this paper, we described and compared various sensor placement
methods. Our evaluation using real-world parking data shows that
data-driven placement methods lead to slightly lower interpolation
errors than data-agnostic methods not receiving such data but
only metadata such as locations of on-street parking bays. Data-
driven methods however require data typically obtained through
preliminary surveys or installation of temporary sensors which
may be expensive and time-consuming.

We conclude that data-agnostic methods are a reasonable alterna-
tive if suitable data is not readily available. Especially our proposed
cluster-based method appears to be a good choice in such cases.

REFERENCES
[1] Antoine Bagula, Lorenzo Castelli, and Marco Zennaro. 2015. On the design of

smart parking networks in the smart cities: An optimal sensor placement model.
Sensors 15, 7 (2015), 15443–15467.

[2] Fabian Bock, Sergio Di Martino, and Antonio Origlia. 2017. A 2-step approach to
improve data-driven parking availability predictions. In Proceedings of the 10th
ACM SIGSPATIAL workshop on computational transportation science. 13–18.

[3] Fabian Bock and Monika Sester. 2016. Improving parking availability maps
using information from nearby roads. Transportation Research Procedia 19 (2016),
207–214.

[4] Brian M de Silva, Krithika Manohar, Emily Clark, Bingni W Brunton, Steven L
Brunton, and J Nathan Kutz. 2021. PySensors: A Python package for sparse
sensor placement. arXiv preprint arXiv:2102.13476 (2021).

[5] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2009. Finding structure
with randomness: Stochastic algorithms for constructing approximate matrix
decompositions. (2009).

[6] MY Idna Idris, YY Leng, EM Tamil, NMNoor, Z Razak, et al. 2009. Car park system:
A review of smart parking system and its technology. Information Technology
Journal 8, 2 (2009), 101–113.

[7] Katherine A Klise, Bethany L Nicholson, and Carl Damon Laird. 2017. Sensor
placement optimization using Chama. Technical Report. Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States).

[8] Andreas Krause, Eric Horvitz, Aman Kansal, and Feng Zhao. 2008. Toward
community sensing. In 2008 International Conference on Information Processing in
Sensor Networks (ipsn 2008). IEEE, 481–492.

[9] Andreas Krause, Ajit Singh, and Carlos Guestrin. 2008. Near-optimal sensor
placements in Gaussian processes: Theory, efficient algorithms and empirical
studies. Journal of Machine Learning Research 9, 2 (2008).

[10] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[11] Krithika Manohar, Bingni W Brunton, J Nathan Kutz, and Steven L Brunton.
2018. Data-driven sparse sensor placement for reconstruction: Demonstrating
the benefits of exploiting known patterns. IEEE Control Systems Magazine 38, 3
(2018), 63–86.

[12] Seapahn Meguerdichian and Miodrag Potkonjak. 2003. Low power 0/1 coverage
and scheduling techniques in sensor networks. Technical Report. Citeseer.

[13] S Deepak Narayanan, Zeel B Patel, Apoorv Agnihotri, and Nipun Batra. 2020. A
toolkit for spatial interpolation and sensor placement. In Proceedings of the 18th
Conference on Embedded Networked Sensor Systems. 653–654.

[14] Sharon L Padula and Rex K Kincaid. 1999. Optimization strategies for sensor and
actuator placement. Technical Report.

[15] Lukas Rottkamp and Matthias Schubert. 2020. Quantifying the potential of data-
driven mobility support systems. In Proceedings of the 13th ACM SIGSPATIAL
International Workshop on Computational Transportation Science. 1–10.

[16] Xavier Sevillano, Elena Màrmol, and Virginia Fernandez-Arguedas. 2014. To-
wards smart traffic management systems: Vacant on-street parking spot detection
based on video analytics. In 17th International Conference on Information Fusion
(FUSION). IEEE, 1–8.

[17] Donald Shepard. 1968. A two-dimensional interpolation function for irregularly-
spaced data. In Proceedings of the 1968 23rd ACM national conference. 517–524.

[18] Chenxi Sun, Victor OK Li, Jacqueline CK Lam, and Ian Leslie. 2019. Optimal
citizen-centric sensor placement for air quality monitoring: a case study of city
of Cambridge, the United Kingdom. IEEE Access 7 (2019), 47390–47400.

[19] Carol Zimmerman, Rachel Klein, Jeremy Schroeder, Katie Turnbull, Kevin Balke,
Mark Burris, Emily Saunoi-Sandgren, Elliot Martin, Susan Shaheen, Caroline
Rodier, et al. 2014. San Francisco urban partnership agreement: national evaluation
report. Technical Report. United States. Department of Transportation. Intelligent
Transportation Systems Joint Program Office.

71

	Abstract
	1 Introduction
	2 Related Work
	3 Problem definition
	4 Sensor placement methods
	4.1 Data-agnostic placement methods
	4.2 Data-driven placement methods

	5 Interpolation methods
	6 Evaluation
	6.1 Evaluation dataset
	6.2 Experiment 1: Training on complete data
	6.3 Experiment 2: Limited training set

	7 Conclusion
	References

